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Deductive verifier for (sequential) Java

Java Modeling Language (JML)

Modular specification/verification

Dynamic Logic (JavaDL), sequent calculus

Symbolic Execution

Dynamic Frames

Automatic and interactive application of rules

Optional translation to SMT-LIB

Counterexample generation
Information flow proofs

Testcase generation
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Part 1: Interaction on Source Code Level
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What is to prove?
Wrong specification?

Source code bug?
Prover needs help?
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“Integrating Source Code, Specification and Proof State into a Single Interactive View for the Deductive
Verification Tool KeY” (Master’s Thesis, Mike Schwörer)

Idea: Represent a goal (sequent) of the proof as JML.

1 Take initial PO and assign origins/categories to the terms
2 Transform correctly under rule applications
3 Render the new view:

Input: Sequent with origin/category tags, Java/JML
Output: Source code with additional JML assume/assert statements placed

Assumptions
Symbolic execution has finished (no modalities).

All updates are applied.

Restrictions to allowed programs (e.g., no for loops, only return + variable, ...).
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Part 2: Proof Slicing
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Sequent calculus: A sequent ϕ0, ..., ϕn =⇒ ψ0, ..., ψm is valid iff

ϕ0 ∧ ... ∧ ϕn → ψ0 ∨ ... ∨ ψm is valid.

Example proof:
∗

close
p =⇒ q, p

notLeft
p,¬q =⇒ p

andLeft
p ∧ ¬q =⇒ p

impRight
=⇒ (p ∧ ¬q) → p
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Often, very large parts of proofs could be removed.
Trend: The larger the proof, the larger the percentage.
Most of the removed steps are normalizations of formulas which are never used later on.
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Part 3: Proof Caching

13/16 Sept. 12, 2023
W. Pfeifer: Advancements in User Interface and
Usability of KeY

Institute of Information Security
and Dependability (KASTEL)



Motivation: Finding the correct and provable specification is often an iterative process.

Observation: If Γ =⇒ ∆ is valid, then Γ,E =⇒ ∆,Z is also valid (*).

(*) Under some restrictions:

The Java code referred to must be the same.

Both must use the same prover settings for semantics.

The same added rules must be present.

Ongoing work:

Which sequents should be in the cache?

Extend the caching beyond a single run of KeY.

Relax the above conditions.
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We have seen:

a novel way for interaction with KeY on the source code level.

“Proof Slicing” to minimize sequent calculus proofs.

“Proof Caching” to avoid reproving the same formulas.

https://github.com/KeYProject/key
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https://github.com/KeYProject/key

	Part 1: Interaction on Source Code Level
	Part 2: Proof Slicing
	Part 3: Proof Caching

