
Advancements in User Interface and Usability of KeY

Wolfram Pfeifer | September 12, 2023

KIT – The Research University in the Helmholtz Association www.kit.edu

https://www.kit.edu


Deductive verifier for (sequential) Java

Java Modeling Language (JML)

Modular specification/verification

Dynamic Logic (JavaDL), sequent calculus

Symbolic Execution

Dynamic Frames

Automatic and interactive application of rules

Optional translation to SMT-LIB

Counterexample generation
Information flow proofs

Testcase generation
. . .

2/16 Sept. 12, 2023
W. Pfeifer: Advancements in User Interface and
Usability of KeY

Institute of Information Security
and Dependability (KASTEL)

KeY



Deductive verifier for (sequential) Java

Java Modeling Language (JML)

Modular specification/verification

Dynamic Logic (JavaDL), sequent calculus

Symbolic Execution

Dynamic Frames

Automatic and interactive application of rules

Optional translation to SMT-LIB

Counterexample generation
Information flow proofs

Testcase generation
. . .

2/16 Sept. 12, 2023
W. Pfeifer: Advancements in User Interface and
Usability of KeY

Institute of Information Security
and Dependability (KASTEL)

KeY



Deductive verifier for (sequential) Java

Java Modeling Language (JML)

Modular specification/verification

Dynamic Logic (JavaDL), sequent calculus

Symbolic Execution

Dynamic Frames

Automatic and interactive application of rules

Optional translation to SMT-LIB

Counterexample generation
Information flow proofs

Testcase generation
. . .

2/16 Sept. 12, 2023
W. Pfeifer: Advancements in User Interface and
Usability of KeY

Institute of Information Security
and Dependability (KASTEL)

KeY



Deductive verifier for (sequential) Java

Java Modeling Language (JML)

Modular specification/verification

Dynamic Logic (JavaDL), sequent calculus

Symbolic Execution

Dynamic Frames

Automatic and interactive application of rules

Optional translation to SMT-LIB

Counterexample generation
Information flow proofs

Testcase generation
. . .

2/16 Sept. 12, 2023
W. Pfeifer: Advancements in User Interface and
Usability of KeY

Institute of Information Security
and Dependability (KASTEL)

KeY



Deductive verifier for (sequential) Java

Java Modeling Language (JML)

Modular specification/verification

Dynamic Logic (JavaDL), sequent calculus

Symbolic Execution

Dynamic Frames

Automatic and interactive application of rules

Optional translation to SMT-LIB

Counterexample generation
Information flow proofs

Testcase generation
. . .

2/16 Sept. 12, 2023
W. Pfeifer: Advancements in User Interface and
Usability of KeY

Institute of Information Security
and Dependability (KASTEL)

KeY



Deductive verifier for (sequential) Java

Java Modeling Language (JML)

Modular specification/verification

Dynamic Logic (JavaDL), sequent calculus

Symbolic Execution

Dynamic Frames

Automatic and interactive application of rules

Optional translation to SMT-LIB

Counterexample generation
Information flow proofs

Testcase generation
. . .

2/16 Sept. 12, 2023
W. Pfeifer: Advancements in User Interface and
Usability of KeY

Institute of Information Security
and Dependability (KASTEL)

KeY



Deductive verifier for (sequential) Java

Java Modeling Language (JML)

Modular specification/verification

Dynamic Logic (JavaDL), sequent calculus

Symbolic Execution

Dynamic Frames

Automatic and interactive application of rules

Optional translation to SMT-LIB

Counterexample generation
Information flow proofs

Testcase generation
. . .

2/16 Sept. 12, 2023
W. Pfeifer: Advancements in User Interface and
Usability of KeY

Institute of Information Security
and Dependability (KASTEL)

KeY



Deductive verifier for (sequential) Java

Java Modeling Language (JML)

Modular specification/verification

Dynamic Logic (JavaDL), sequent calculus

Symbolic Execution

Dynamic Frames

Automatic and interactive application of rules

Optional translation to SMT-LIB

Counterexample generation
Information flow proofs

Testcase generation
. . .

2/16 Sept. 12, 2023
W. Pfeifer: Advancements in User Interface and
Usability of KeY

Institute of Information Security
and Dependability (KASTEL)

KeY



Deductive verifier for (sequential) Java

Java Modeling Language (JML)

Modular specification/verification

Dynamic Logic (JavaDL), sequent calculus

Symbolic Execution

Dynamic Frames

Automatic and interactive application of rules

Optional translation to SMT-LIB

Counterexample generation
Information flow proofs

Testcase generation
. . .

2/16 Sept. 12, 2023
W. Pfeifer: Advancements in User Interface and
Usability of KeY

Institute of Information Security
and Dependability (KASTEL)

KeY





precondition ϕ



precondition ϕ

program p



precondition ϕ

program p

postcondition ψ



precondition ϕ

program p

postcondition ψ

ϕ→ ⟨p⟩ψ



Part 1: Interaction on Source Code Level

4/16 Sept. 12, 2023
W. Pfeifer: Advancements in User Interface and
Usability of KeY

Institute of Information Security
and Dependability (KASTEL)







What is to prove?
Wrong specification?

Source code bug?
Prover needs help?



What is to prove?
Wrong specification?

Source code bug?
Prover needs help?



What is to prove?
Wrong specification?

Source code bug?
Prover needs help?



What is to prove?
Wrong specification?

Source code bug?
Prover needs help?



What is to prove?
Wrong specification?

Source code bug?
Prover needs help?





?



?

valid Java heap



?

valid Java heap

type information



?

valid Java heap

type information
no termination witness



?

valid Java heap

type information
no termination witness

heap encoding



“Integrating Source Code, Specification and Proof State into a Single Interactive View for the Deductive
Verification Tool KeY” (Master’s Thesis, Mike Schwörer)

Idea: Represent a goal (sequent) of the proof as JML.

1 Take initial PO and assign origins/categories to the terms
2 Transform correctly under rule applications
3 Render the new view:

Input: Sequent with origin/category tags, Java/JML
Output: Source code with additional JML assume/assert statements placed

Assumptions
Symbolic execution has finished (no modalities).

All updates are applied.

Restrictions to allowed programs (e.g., no for loops, only return + variable, ...).

7/16 Sept. 12, 2023
W. Pfeifer: Advancements in User Interface and
Usability of KeY

Institute of Information Security
and Dependability (KASTEL)

Progress so far



“Integrating Source Code, Specification and Proof State into a Single Interactive View for the Deductive
Verification Tool KeY” (Master’s Thesis, Mike Schwörer)

Idea: Represent a goal (sequent) of the proof as JML.
1 Take initial PO and assign origins/categories to the terms
2 Transform correctly under rule applications
3 Render the new view:

Input: Sequent with origin/category tags, Java/JML
Output: Source code with additional JML assume/assert statements placed

Assumptions
Symbolic execution has finished (no modalities).

All updates are applied.

Restrictions to allowed programs (e.g., no for loops, only return + variable, ...).

7/16 Sept. 12, 2023
W. Pfeifer: Advancements in User Interface and
Usability of KeY

Institute of Information Security
and Dependability (KASTEL)

Progress so far



“Integrating Source Code, Specification and Proof State into a Single Interactive View for the Deductive
Verification Tool KeY” (Master’s Thesis, Mike Schwörer)

Idea: Represent a goal (sequent) of the proof as JML.
1 Take initial PO and assign origins/categories to the terms
2 Transform correctly under rule applications
3 Render the new view:

Input: Sequent with origin/category tags, Java/JML
Output: Source code with additional JML assume/assert statements placed

Assumptions
Symbolic execution has finished (no modalities).

All updates are applied.

Restrictions to allowed programs (e.g., no for loops, only return + variable, ...).

7/16 Sept. 12, 2023
W. Pfeifer: Advancements in User Interface and
Usability of KeY

Institute of Information Security
and Dependability (KASTEL)

Progress so far









Part 2: Proof Slicing

9/16 Sept. 12, 2023
W. Pfeifer: Advancements in User Interface and
Usability of KeY

Institute of Information Security
and Dependability (KASTEL)



Sequent calculus: A sequent ϕ0, ..., ϕn =⇒ ψ0, ..., ψm is valid iff

ϕ0 ∧ ... ∧ ϕn → ψ0 ∨ ... ∨ ψm is valid.

Example proof:
∗

close
p =⇒ q, p

notLeft
p,¬q =⇒ p

andLeft
p ∧ ¬q =⇒ p

impRight
=⇒ (p ∧ ¬q) → p

10/16 Sept. 12, 2023
W. Pfeifer: Advancements in User Interface and
Usability of KeY

Institute of Information Security
and Dependability (KASTEL)

Proof Slicing



Sequent calculus: A sequent ϕ0, ..., ϕn =⇒ ψ0, ..., ψm is valid iff

ϕ0 ∧ ... ∧ ϕn → ψ0 ∨ ... ∨ ψm is valid.

Example proof:
∗

close
p =⇒ q, p

notLeft
p,¬q =⇒ p

andLeft
p ∧ ¬q =⇒ p

impRight
=⇒ (p ∧ ¬q) → p

10/16 Sept. 12, 2023
W. Pfeifer: Advancements in User Interface and
Usability of KeY

Institute of Information Security
and Dependability (KASTEL)

Proof Slicing



Sequent calculus: A sequent ϕ0, ..., ϕn =⇒ ψ0, ..., ψm is valid iff

ϕ0 ∧ ... ∧ ϕn → ψ0 ∨ ... ∨ ψm is valid.

Example proof:
∗

close
p =⇒ q, p

notLeft
p,¬q =⇒ p

andLeft
p ∧ ¬q =⇒ p

impRight
=⇒ (p ∧ ¬q) → p

10/16 Sept. 12, 2023
W. Pfeifer: Advancements in User Interface and
Usability of KeY

Institute of Information Security
and Dependability (KASTEL)

Proof Slicing



Sequent calculus: A sequent ϕ0, ..., ϕn =⇒ ψ0, ..., ψm is valid iff

ϕ0 ∧ ... ∧ ϕn → ψ0 ∨ ... ∨ ψm is valid.

Example proof:
∗

close
p =⇒ q, p

notLeft
p ,¬q =⇒ p

andLeft
p ∧ ¬q =⇒ p

impRight
=⇒ (p ∧ ¬q) → p

10/16 Sept. 12, 2023
W. Pfeifer: Advancements in User Interface and
Usability of KeY

Institute of Information Security
and Dependability (KASTEL)

Proof Slicing



Sequent calculus: A sequent ϕ0, ..., ϕn =⇒ ψ0, ..., ψm is valid iff

ϕ0 ∧ ... ∧ ϕn → ψ0 ∨ ... ∨ ψm is valid.

Example proof:
∗

close
p =⇒ q, p

notLeft
p ,¬q =⇒ p

andLeft
p ∧ ¬q =⇒ p

impRight
=⇒ (p ∧ ¬q) → p

10/16 Sept. 12, 2023
W. Pfeifer: Advancements in User Interface and
Usability of KeY

Institute of Information Security
and Dependability (KASTEL)

Proof Slicing



Sequent calculus: A sequent ϕ0, ..., ϕn =⇒ ψ0, ..., ψm is valid iff

ϕ0 ∧ ... ∧ ϕn → ψ0 ∨ ... ∨ ψm is valid.

Example proof:
∗

close
p =⇒ q, p

notLeft
p ,¬q =⇒ p

andLeft
p ∧ ¬q =⇒ p

impRight
=⇒ (p ∧ ¬q) → p

10/16 Sept. 12, 2023
W. Pfeifer: Advancements in User Interface and
Usability of KeY

Institute of Information Security
and Dependability (KASTEL)

Proof Slicing







Often, very large parts of proofs could be removed.
Trend: The larger the proof, the larger the percentage.
Most of the removed steps are normalizations of formulas which are never used later on.

12/16 Sept. 12, 2023
W. Pfeifer: Advancements in User Interface and
Usability of KeY

Institute of Information Security
and Dependability (KASTEL)

Evaluation



Part 3: Proof Caching

13/16 Sept. 12, 2023
W. Pfeifer: Advancements in User Interface and
Usability of KeY

Institute of Information Security
and Dependability (KASTEL)



Motivation: Finding the correct and provable specification is often an iterative process.

Observation: If Γ =⇒ ∆ is valid, then Γ,E =⇒ ∆,Z is also valid (*).

(*) Under some restrictions:

The Java code referred to must be the same.

Both must use the same prover settings for semantics.

The same added rules must be present.

Ongoing work:

Which sequents should be in the cache?

Extend the caching beyond a single run of KeY.

Relax the above conditions.

14/16 Sept. 12, 2023
W. Pfeifer: Advancements in User Interface and
Usability of KeY

Institute of Information Security
and Dependability (KASTEL)

Proof Caching



Motivation: Finding the correct and provable specification is often an iterative process.

Observation: If Γ =⇒ ∆ is valid, then Γ,E =⇒ ∆,Z is also valid (*).

(*) Under some restrictions:

The Java code referred to must be the same.

Both must use the same prover settings for semantics.

The same added rules must be present.

Ongoing work:

Which sequents should be in the cache?

Extend the caching beyond a single run of KeY.

Relax the above conditions.

14/16 Sept. 12, 2023
W. Pfeifer: Advancements in User Interface and
Usability of KeY

Institute of Information Security
and Dependability (KASTEL)

Proof Caching



Motivation: Finding the correct and provable specification is often an iterative process.

Observation: If Γ =⇒ ∆ is valid, then Γ,E =⇒ ∆,Z is also valid (*).

(*) Under some restrictions:

The Java code referred to must be the same.

Both must use the same prover settings for semantics.

The same added rules must be present.

Ongoing work:

Which sequents should be in the cache?

Extend the caching beyond a single run of KeY.

Relax the above conditions.

14/16 Sept. 12, 2023
W. Pfeifer: Advancements in User Interface and
Usability of KeY

Institute of Information Security
and Dependability (KASTEL)

Proof Caching



Motivation: Finding the correct and provable specification is often an iterative process.

Observation: If Γ =⇒ ∆ is valid, then Γ,E =⇒ ∆,Z is also valid (*).

(*) Under some restrictions:

The Java code referred to must be the same.

Both must use the same prover settings for semantics.

The same added rules must be present.

Ongoing work:

Which sequents should be in the cache?

Extend the caching beyond a single run of KeY.

Relax the above conditions.

14/16 Sept. 12, 2023
W. Pfeifer: Advancements in User Interface and
Usability of KeY

Institute of Information Security
and Dependability (KASTEL)

Proof Caching









We have seen:

a novel way for interaction with KeY on the source code level.

“Proof Slicing” to minimize sequent calculus proofs.

“Proof Caching” to avoid reproving the same formulas.

https://github.com/KeYProject/key

16/16 Sept. 12, 2023
W. Pfeifer: Advancements in User Interface and
Usability of KeY

Institute of Information Security
and Dependability (KASTEL)

Summary

https://github.com/KeYProject/key

	Part 1: Interaction on Source Code Level
	Part 2: Proof Slicing
	Part 3: Proof Caching

