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Recursive evaluation:
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The Top-Down Solver

Recursive evaluation:
» starts with an interesting unknown
» descends to query influencing unknowns in right-hand side
> iterates on a queried unknown until local fixpoint is found

Self-observation:
» map o from unknowns to their last evaluated value
» set of called unknowns: to detect recursive dependencies
> set of stable unknowns: value can be looked up without re-iteration
» map of influenced unknowns: re-evaluate when value changes



The Trace of the Solver
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Proving Partial Correctness
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Reach
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Ongoing Work: Record Stable Unknowns
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Summary

» formalized the top-down solver in Isabelle

» proved partial correctness for the simplified Top-Down Solver

» by induction over trace
> with invariants about its state of computation

» ongoing: show equivalence to vanilla Top-Down Solver
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The Top-Down Solver - simplified

solve x = iterate x {x} empty_map
query (Answer d) called o = (d, o)
query (Query x f) called o = (

let (xd, o) =
if x ¢ called then
iterate x (insert x called) o

else
(fmlup o x, o)

in
query (f xd) called o
iterate x called o = (
let (d_new, o) = query (T x) called o in
if d_new = fmlup o x then
(d_new, o)
else
iterate x called (fmupd x d_new o))
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