
Verifiying the Top-Down Solver in

Isabelle

Sarah Tilscher, Yannick Stade, Helmut Seidl

Technical University of Munich

AVM 2023

1 / 11



Constraint Systems

D := 2{a,b,c}, v :=⊆
y w {a} ∪ z

z w y ∪ w

w w {c}

Solve a system of inequalities:

xi w fi(x1, ...), i = 1, ...

2 / 11



Constraint Systems

D := 2{a,b,c}, v :=⊆
y w {a} ∪ z

z w y ∪ w

w w {c}

Solve a system of inequalities:

xi w fi(x1, ...), i = 1, ...

2 / 11



The Top-Down Solver

Recursive evaluation:

I starts with an interesting unknown

I descends to query influencing unknowns in right-hand side

I iterates on a queried unknown until local fixpoint is found

Self-observation:

I map σ from unknowns to their last evaluated value

I set of called unknowns: to detect recursive dependencies

I set of stable unknowns: value can be looked up without re-iteration

I map of influenced unknowns: re-evaluate when value changes

3 / 11



The Top-Down Solver

Recursive evaluation:

I starts with an interesting unknown

I descends to query influencing unknowns in right-hand side

I iterates on a queried unknown until local fixpoint is found

Self-observation:

I map σ from unknowns to their last evaluated value

I set of called unknowns: to detect recursive dependencies

I set of stable unknowns: value can be looked up without re-iteration

I map of influenced unknowns: re-evaluate when value changes

3 / 11



The Trace of the Solver

y w {a} ∪ z

z w y ∪ w

w w {c}
solve y

= {a, c}

iterate y

= {a, c}

query z

= {c}

iterate z

= {c}

query y

= ⊥

called

query w

= {c}

iterate w

= {c}
iterate w

= {c}

iterate z

= {c}

query y

= ⊥

called

query w

= {c}

iterate w

= {c}

iterate y

= {a, c}

query z

= {a, c}

iterate z

= {a, c}

query y

= {a, c}

called

query w

= {c}

iterate w

= {c}

iterate z

= {a, c}

query y

= {a, c}

called

query w

= {c}

iterate w

= {c}

4 / 11



Proving Partial Correctness

call to solve terminates and solve x = (xd, σ)

⇓

∀y ∈ reach x. eq y σ = σ y

reach: set of unknowns evaluated during the final iteration

5 / 11



Reach

solve y

= {a, c}

iterate y

= {a, c}

query z

= {c}

iterate z

= {c}

query y

= ⊥

called

query w

= {c}

iterate w

= {c}
iterate w

= {c}

iterate z

= {c}

query y

= ⊥

called

query w

= {c}

iterate w

= {c}

iterate y

= {a, c}

query z

= {a, c}

iterate z

= {a, c}

query y

= {a, c}

called

query w

= {c}

iterate w

= {c}

iterate z

= {a, c}

query y

= {a, c}

called

query w

= {c}

iterate w

= {c}

6 / 11



Induction over the Trace

solve

… iterate

query

…

… query

…

query

…

iterate

…

… iterate

…

induction hypotheses

step

7 / 11



Invariants

solve y

… iterate y

query v

…

… query w

…

query x

…

… query z

…

iterate y

…

… iterate y

…∀z ∈ reach− called.

eq z σ′ = σ′ z

8 / 11



Invariants

solve y

… iterate y

query v

…

… query w

…

query x

…

… query z

…

iterate y

…

… iterate y

…∀z ∈ reachL.

qσ z = σ′ z

9 / 11



Ongoing Work: Record Stable Unknowns

y w {a} ∪ z

z w y ∪ w

w w {c}
solve y

= {a, c}

iterate y

= {a, c}

query z

= {c}

iterate z

= {c}

query y

= ⊥

called

query w

= {c}

iterate w

= {c}
iterate w

= {c}

iterate z

= {c}

query y

= ⊥
query w

= {c}

iterate w

= {c}

iterate y

= {a, c}

query z

= {a, c}

iterate z

= {a, c}

query y

= {a, c}

called

query w

= {c}

iterate w

= {c}

iterate z

= {a, c}

query y

= {a, c}
query w

= {c}

iterate w

= {c}

stable stable

10 / 11



Summary

I formalized the top-down solver in Isabelle

I proved partial correctness for the simplified Top-Down Solver

I by induction over trace
I with invariants about its state of computation

I ongoing: show equivalence to vanilla Top-Down Solver

11 / 11



The Top-Down Solver - simplified
solve x = iterate x {x} empty_map

query (Answer d) called σ = (d, σ)
query (Query x f) called σ = (

let (xd, σ) =
if x /∈ called then

iterate x (insert x called) σ

else
(fmlup σ x, σ)

in
query (f xd) called σ

iterate x called σ = (
let (d_new, σ) = query (T x) called σ in
if d_new = fmlup σ x then

(d_new, σ)
else

iterate x called (fmupd x d_new σ))

1 / 1



The Top-Down Solver - simplified
solve x = iterate x {x} empty_map
query (Answer d) called σ = (d, σ)
query (Query x f) called σ = (

let (xd, σ) =
if x /∈ called then

iterate x (insert x called) σ

else
(fmlup σ x, σ)

in
query (f xd) called σ

iterate x called σ = (

let (d_new, σ) = query (T x) called σ in
if d_new = fmlup σ x then

(d_new, σ)
else

iterate x called (fmupd x d_new σ))

1 / 1



The Top-Down Solver - simplified
solve x = iterate x {x} empty_map
query (Answer d) called σ = (d, σ)
query (Query x f) called σ = (

let (xd, σ) =
if x /∈ called then

iterate x (insert x called) σ

else
(fmlup σ x, σ)

in

query (f xd) called σ

iterate x called σ = (

let (d_new, σ) = query (T x) called σ in
if d_new = fmlup σ x then

(d_new, σ)
else

iterate x called (fmupd x d_new σ))

1 / 1



The Top-Down Solver - simplified
solve x = iterate x {x} empty_map
query (Answer d) called σ = (d, σ)
query (Query x f) called σ = (

let (xd, σ) =
if x /∈ called then

iterate x (insert x called) σ

else
(fmlup σ x, σ)

in

query (f xd) called σ

iterate x called σ = (

let (d_new, σ) = query (T x) called σ in
if d_new = fmlup σ x then

(d_new, σ)
else

iterate x called (fmupd x d_new σ))

1 / 1



The Top-Down Solver - simplified
solve x = iterate x {x} empty_map
query (Answer d) called σ = (d, σ)
query (Query x f) called σ = (

let (xd, σ) =
if x /∈ called then

iterate x (insert x called) σ

else
(fmlup σ x, σ)

in
query (f xd) called σ

iterate x called σ = (

let (d_new, σ) = query (T x) called σ in
if d_new = fmlup σ x then

(d_new, σ)
else

iterate x called (fmupd x d_new σ))

1 / 1



The Top-Down Solver - simplified
solve x = iterate x {x} empty_map
query (Answer d) called σ = (d, σ)
query (Query x f) called σ = (

let (xd, σ) =
if x /∈ called then

iterate x (insert x called) σ

else
(fmlup σ x, σ)

in
query (f xd) called σ

iterate x called σ = (
let (d_new, σ) = query (T x) called σ in
if d_new = fmlup σ x then

(d_new, σ)

else
iterate x called (fmupd x d_new σ))

1 / 1



The Top-Down Solver - simplified
solve x = iterate x {x} empty_map
query (Answer d) called σ = (d, σ)
query (Query x f) called σ = (

let (xd, σ) =
if x /∈ called then

iterate x (insert x called) σ

else
(fmlup σ x, σ)

in
query (f xd) called σ

iterate x called σ = (
let (d_new, σ) = query (T x) called σ in
if d_new = fmlup σ x then

(d_new, σ)
else

iterate x called (fmupd x d_new σ))

1 / 1


	Title Page
	Top-Down Solver
	Proof Goal
	Induction
	Invariants
	Ongoing Work
	Summary
	Appendix

