Verifiying the Top-Down Solver in
Isabelle

Sarah Tilscher, Yannick Stade, Helmut Seidl

Technical University of Munich

AVM 2023

Constraint Systems

D i olabe} Cio

)

N

yJ{aluz
zdyuw
w 3 {c}

Constraint Systems

D :=2{abc} C.=C

yd{atuz
zdyuw
w 3 {c}

2 /11

The Top-Down Solver

Recursive evaluation:
» starts with an interesting unknown
» descends to query influencing unknowns in right-hand side
> iterates on a queried unknown until local fixpoint is found

The Top-Down Solver

Recursive evaluation:
» starts with an interesting unknown
» descends to query influencing unknowns in right-hand side
> iterates on a queried unknown until local fixpoint is found

Self-observation:
» map o from unknowns to their last evaluated value
» set of called unknowns: to detect recursive dependencies
> set of stable unknowns: value can be looked up without re-iteration
» map of influenced unknowns: re-evaluate when value changes

The Trace of the Solver

yJd{atuz
zdyuw solve y
w 3 {c} ={a,c}
|
I 1
iterate y iterate y
={ac} ={a.c}
query z query z
={c} ={ac}
| |
I 1 I 1
iterate z iterate z iterate z iterate z
={c} ={c} ={ac} ={a.c}
query y query w query y query w query y query w query y query w
=1 ={ch =1 ={c} ={ac} ={c} ={ac} ={c}
called |_I_| called | called | called |
iterate w iterate w iterate w iterate w iterate w
={ch ={c} ={c} ={c} ={c}

Proving Partial Correctness

4

reach: set of unknowns evaluated during the final iteration

5/11

Reach

solve y
={a,c}
|
I 1
iterate y iterate y
={ac} ={ac}
query z query z
={c} ={ac}
1 1
! 1 I 1
iterate z iterate z iterate z iterate z
={c} = {c} ={a,c} = {a,c}
query y query w query w query y query w query y query w
=1 ={c} ={c} ={ac} ={c} ={ac} ={c}
iterate w iterate w iterate w iterate w iterate w
={c} ={c} ={c} ={c} ={c}

Induction over the Trace

solve

iterate

induction hypotheses

Invariants

solve y

iterate y iterate y iterate y

| | eqzo' =o'z | |

query v query w query x query z

Vz €

Invariants

solve y

iterate y

iterate y

e
N
m

oz =0’z

query v query w query x

query z

iterate y

Ongoing Work: Record Stable Unknowns

yJd{atuz
zJdyuUw sovely
w 3 {c} ={a,c}
|
I 1
iterate y iterate y
={a.c} ={ac}
query z query z
={c} ={ac}
| |
I 1 I 1
iterate z iterate z iterate z iterate z
={c} ={c} ={ac} ={ac}
I I I stable I I I I stable I
query y query w query y query w query y query w query y query w
=1 ={ch =1 ={c} ={ac} ={c} ={ac} ={c}
called I | called | |
iterate w iterate w iterate w iterate w iterate w
={ch ={c} ={c} ={c} ={c}

Summary

» formalized the top-down solver in Isabelle

» proved partial correctness for the simplified Top-Down Solver

» by induction over trace
> with invariants about its state of computation

» ongoing: show equivalence to vanilla Top-Down Solver

The Top-Down Solver - simplified

solve x = iterate x {x} empty_map

The Top-Down Solver - simplified

solve x = iterate x {x} empty_map
query (Answer d) called o = (d, o)
query (Query x f) called o = (

iterate x called o = (

The Top-Down Solver - simplified

solve x = iterate x {x} empty_map
query (Answer d) called o = (d, o)
query (Query x f) called o = (

let (xd, o) =
if x ¢ called then
iterate x (insert x called) o

in

iterate x called o = (

The Top-Down Solver - simplified

solve x = iterate x {x} empty_map
query (Answer d) called o = (d, o)
query (Query x f) called o = (

let (xd, o) =
if x ¢ called then
iterate x (insert x called) o

else
(fmlup o x, o)

in

iterate x called o = (

The Top-Down Solver - simplified

solve x = iterate x {x} empty_map
query (Answer d) called o = (d, o)
query (Query x f) called o = (

let (xd, o) =
if x ¢ called then
iterate x (insert x called) o

else
(fmlup o x, o)

in
query (f xd) called o

iterate x called o = (

The Top-Down Solver - simplified

solve x = iterate x {x} empty_map
query (Answer d) called o = (d, o)
query (Query x f) called o = (

let (xd, o) =
if x ¢ called then
iterate x (insert x called) o

else
(fmlup o x, o)

in
query (f xd) called o
iterate x called o = (
let (d_new, o) = query (T x) called o in

if d_new = fmlup o x then
(d_new, o)

The Top-Down Solver - simplified

solve x = iterate x {x} empty_map
query (Answer d) called o = (d, o)
query (Query x f) called o = (

let (xd, o) =
if x ¢ called then
iterate x (insert x called) o

else
(fmlup o x, o)

in
query (f xd) called o
iterate x called o = (
let (d_new, o) = query (T x) called o in
if d_new = fmlup o x then
(d_new, o)
else
iterate x called (fmupd x d_new o))

	Title Page
	Top-Down Solver
	Proof Goal
	Induction
	Invariants
	Ongoing Work
	Summary
	Appendix

