Verifiying the Top-Down Solver in Isabelle

Sarah Tilscher, Yannick Stade, Helmut Seidl

Technical University of Munich

AVM 2023

Constraint Systems

$$
\begin{aligned}
\mathrm{D}:=2^{\{a, b, c\}}, \sqsubseteq:=\subseteq & \\
& \\
& y \sqsupseteq\{a\} \cup z \\
& z \sqsupseteq y \cup w \\
& w \\
& \sqsupseteq\{c\}
\end{aligned}
$$

Constraint Systems

$$
\begin{array}{ll}
\mathbb{D}:=2^{\{a, b, c\}}, \sqsubseteq:=\subseteq & \\
& y \sqsupseteq\{a\} \cup z \\
& z \sqsupseteq y \cup w \\
& w \sqsupseteq\{c\}
\end{array}
$$

Solve a system of inequalities:

$$
x_{i} \sqsupseteq f_{i}\left(x_{1}, \ldots\right), \quad i=1, \ldots
$$

The Top-Down Solver

Recursive evaluation:

- starts with an interesting unknown
- descends to query influencing unknowns in right-hand side
- iterates on a queried unknown until local fixpoint is found

The Top-Down Solver

Recursive evaluation:

- starts with an interesting unknown
- descends to query influencing unknowns in right-hand side
- iterates on a queried unknown until local fixpoint is found

Self-observation:

- map σ from unknowns to their last evaluated value
- set of called unknowns: to detect recursive dependencies
- set of stable unknowns: value can be looked up without re-iteration
- map of influenced unknowns: re-evaluate when value changes

The Trace of the Solver

Proving Partial Correctness

$$
\text { call to solve terminates and solve } x=(x d, \sigma)
$$

\Downarrow

$$
\forall y \in \operatorname{reach} x . \quad \text { eq } y \sigma=\sigma y
$$

reach: set of unknowns evaluated during the final iteration

Reach

Induction over the Trace

Invariants

Invariants

Ongoing Work: Record Stable Unknowns

y	$\sqsupseteq\{a\} \cup z$
z	$\sqsupseteq y \cup w$
w	$\sqsupseteq\{c\}$

Summary

- formalized the top-down solver in Isabelle
- proved partial correctness for the simplified Top-Down Solver
- by induction over trace
- with invariants about its state of computation
- ongoing: show equivalence to vanilla Top-Down Solver

The Top-Down Solver - simplified

solve $\mathrm{x}=$ iterate $\mathrm{x}\{\mathrm{x}\}$ empty_map

The Top-Down Solver - simplified

solve $\mathrm{x}=$ iterate $\mathrm{x}\{\mathrm{x}\}$ empty_map

query (Answer d) called $\sigma=(\mathrm{d}, \sigma)$
query (Query x f) called $\sigma=$ (
iterate x called $\sigma=$ (

The Top-Down Solver - simplified

```
solve x = iterate x {x} empty_map
query (Answer d) called \sigma = (d, \sigma)
query (Query x f) called \sigma = (
    let (xd, \sigma) =
        if x }\not\in\mathrm{ called then
        iterate x (insert x called) \sigma
    in
```

iterate x called $\sigma=$ (

The Top-Down Solver - simplified

```
solve x = iterate x {x} empty_map
query (Answer d) called \sigma = (d, \sigma)
query (Query x f) called \sigma = (
    let (xd, \sigma) =
        if x }\not\in\mathrm{ called then
        iterate x (insert x called) \sigma
        else
            (fmlup \sigma x, \sigma)
    in
```

iterate x called $\sigma=$ (

The Top-Down Solver - simplified

```
solve x = iterate x {x} empty_map
query (Answer d) called \sigma = (d, \sigma)
query (Query x f) called \sigma = (
    let (xd, \sigma) =
        if x }\not\in\mathrm{ called then
            iterate x (insert x called) \sigma
        else
            (fmlup \sigma x, \sigma)
    in
    query (f xd) called \sigma
iterate x called \sigma = (
```


The Top-Down Solver - simplified

```
solve x = iterate x {x} empty_map
query (Answer d) called \sigma = (d, \sigma)
query (Query x f) called \sigma = (
    let (xd, \sigma) =
        if x }\not\in\mathrm{ called then
            iterate x (insert x called) \sigma
        else
            (fmlup \sigma x, \sigma)
    in
    query (f xd) called \sigma
iterate x called \sigma = (
    let (d_new, \sigma) = query (T x) called \sigma in
    if d_new = fmlup \sigma x then
        (d_new, \sigma)
```


The Top-Down Solver - simplified

```
solve x = iterate x {x} empty_map
query (Answer d) called \sigma = (d, \sigma)
query (Query x f) called \sigma = (
    let (xd, \sigma) =
        if x }\not\in\mathrm{ called then
            iterate x (insert x called) \sigma
        else
            (fmlup \sigma x, \sigma)
    in
    query (f xd) called \sigma
iterate x called \sigma = (
    let (d_new, \sigma) = query (T x) called \sigma in
    if d_new = fmlup \sigma x then
        (d_new, \sigma)
    else
        iterate x called (fmupd x d_new \sigma))
```

