Cultures of Programming
A Look at the History of Programming

Tomas Petricek, Charles University
¥ (omas@tomasp.net

© nitps//tomasp.net

¥ (Wtomaspetricek

mailto:tomas@tomasp.net
https://tomasp.net/
http://twitter.com/tomaspetricek

Introduction
Cultures of Programming

s Knight's $440 million glitch the
costliest computer bug ever?

by Brian Patrick Eha @CNNTech -
:10:22 AMET ° o v

When it comes to lethal bugs, the computer glitch that set fire to
$440 million of Knight Capital Group's funds last Wednesday ranks
right up there with the tsetse fly.

Twist the Lion's Tail

Implemented new code
replacing the "Power Pegq’,
deployed the change and
enabled a flag to turn it on.

Deployment failed, running
old untested code. Rollback
only made it worsel

What should have been
done to prevent this?

Counterfactual Speculations (1/2)

Mathematical Culture

e 'Formal Verification of Financial
Algorithms, Progress and Prospects’
e [he bug was not in the algorithm

Engineering Culture

e 'Had |they| implemented an automated deployment
system [the error] would have been avoided!
e Cautionary tale of the DevOps movement

Counterfactual Speculations (2/2)

Managerial Culture

e ‘system of risk management controls anc
supervisory procedures not reasonably
designed” as required by the rule 15¢3-5

Hacker and Humanistic Cultures

e How can it take 45 minutes to stop it”?
e Automated trading is not in line
with augmenting human intellect

Cultures of Programming
What is this talk about

® Multi-disciplinary origins of programming
a8 Cultures remain surprisingly stable over time
M Interesting things happen when they meet
Useful fiction for understanding the history

Case Study #1
Mathematization of Programming

Programming
in the 1940s

Planning the
computation and
wiring cables

O idea of 5
Drogramming
anguage!

Making Programming Easier

HaCker triCkS (late 1 9408) No. SHORT CODE Label Replaces

- - S RO EOEEL -k Ky W
. Pseude—mstru.cmns 5 510 s1o7so st
e [ranslated or interpretec X060 EHINE X0

Mathematical theories (late 1950s)
e Chomsky's work on formal grammars

Managerial needs (1950s)

e Computer installation managers
e Need cross-machine compatibility

When technology
became language

(Nofre, Priestley, 2014)

Meeting of hacker,
mathematical and
managerial culture!

Birth of a single unified
way of thinking?

TRANSLAT 0N PHASE

s .iq‘x ./4'3

Languages of the 1950s
Different cultures think differently

& COBOL - Common business-oriented language
#Z ALGOL - Formal mathematical language
& LISP - Symbolic manipulation with interactivity

L1

L2 :

s=1;1=1;

if ¢ = nthen goto L2
1 =1+ 1;

§=58X1;

goto L1;

print(s);

s=1;1=1;
while: < ndo
1 =1+ 1;
§ =8 X1;
end
print(s);

Goto Considered
Harmful

(Dijkstra, 1968)

Engineering
Code difficult to
understand

Mathematical
Breaks compositional
reasoning

Structured Programming
A better way of organizing code

9 Coined by Dijkstra a year later in 1969
Intended as a good programming practice
Code corresponds to execution logic
_ater generalized to structured data

0 Q

DATAMATI®AN.

DECEMBER, 1973
volume 19 number 12
This issue 137,600 copies

52

58

revolution in programming

According to guest editor McCracken, structured programming is a major intellectual
invention that will revolutionize the- way programs are produced. Our articles on this
subject approach the issue in several ways. Before reading them, be sure to read the over-

view.

50 Revolution in Programming: An Overview
DANIEL D. MC CRACKEN

Structured Programming 55
JAMES R. DONALDSON

Chief Programmer Teams
F. TERRY BAKER and HARLAN D. MILLS

Structured Programming: Top-down Approach
EDWARD F. MILLER, JR. and GEORGE E. LINDAMOOD

62 A Linguistic Contribution to GOTO-less
Programming
R. LAWRENCE CLARK

Structured
Programming

Chief programmer

teams methodology

Adapts the ideg for
mManagement purposes

Organizing code vs.
Organizing people

Culture Clash

Dijkstra disapproves

American ‘'management philosophy |
aiming at making companies as |
independent as possible of the

competence of their employees”

Anti-intellectualism characterized Dy B
"How to program if you cannot.

Good code as part of engineering dignity!

Clashes & Collaborations
Proofs and social processes (1977)

9 Proofs lack social processes of mathematics!
‘B A political pamphlet from the middle ages!

» Cleanroom methodology to ensure proofs check
R Proof assistants check proofs mechanically

Case Study #2
Interactive Programming

Batch processing

Adopted when big 1940s
computers became useful

Pass your stack of cards
to the operator, wait
hours/days for the result...

Inefficient, but the
norm N the 1950s

MIT TX-0
""Hackers"

Built for testing, loaned
to MIT RLE in 1958

Used interactively
through terminal

Available in time slots
=24 hours per day

Interactive Programming
Struggles in the 1960s

Ir Low performance LINC computer for $43,000
&5 |nteractive time-sharing systems via terminals
@ ' [he Mother of All Demos" talk in 1968

@ Computers slowly become more affordable..

Smalltalk (1970s

o&?ﬁn XEROX - Learning Research Group | n n Ovat | Ve SySt e m

SCreen restore
1314 disk pages Srralitalk quit

Changes
Filze

&= Graphical interface
Object-oriented

Hardcopy

p| Fhis 16 2 stipetiacs for prasencing windoes onete dispizy. ir 1 1 T~
enter [self 5 hahds vonow. wirdl e sedis s depressed. ourcside, Yithe i U | | I a n | S | C VI S I O n
caither] s cono, i distiinegs resndges o il ased o e
VIS,

&Mm Scheduling

[editMenu|STATTUR
serollpar 4 [Frame contains: stylus Lo

- mming for kid

[self enter.

mp[??t;ﬁg‘n,e contoins: stulus e rO g ra ‘ m g O ’(| S
[keyboard active=[zelf keybonrd]

Stylus doume[self pendoim]]

ikl " Personal dynamic medium

Tfales]

gkt g e | Self-modifiable

ourside [Tifalse]

[keyboord next. user flash]

Image
sl'm‘u%

[frame outling. . o .
lefrarme put: self title at: frame origin + titleloc.
titleframe complement

Commercialization

Xerox Star (1981)

e Adopts the graphical display
e Adopts icons’ and 'desktop’
e Closed end-user applications!

Commercial Smalltalk

e Adopted inthe 1990s in banks
e Collaboration and IP protection hard
e [nspired modern development practices

HOW TO “READ” FM TUNER SPECIFICATIONS

Popular Electronics

AZINE JANUARY 197

PROJECT BREAKTHROUGH!

World’s First Minicomputer Kit
to Rival Commercial Models...
"ALTAIR 8800” _ SAVE OVER $1000

ALSO IN THIS ISSUE:

® An Undet-$90 Scientific Calculator Project
; | ® CCD's—TV Camera Tube Successor ?
® Thyristor-Controlled Photoflashers

TEST REPORTS:

Technics 200 Speaker System

Pioneer RT-1011 Open-Reel Recorder

Tram Diamond-40 CB AM Transceiver
Edmund Scientific "Kirlian” Photo Kit
Hewlett-Packard 5381 Frequency Counter

Interactive
Programming
Strikes Back

MiCroprocessors make
't possible to builo
computers cheap
enough for everyone

They do not do much!

The 1977 trinity

Three minicomputers

e Widely accessible
e Commodore PET Apple, TRS-80

Hacker style of programming

o Start in interactive BASIC
e Copy programs from magazines

Write code to load & run programs
Actually accessible to (many) kids

Interactive Programming
Struggles in the late 1970s

BB Killer apps like dBASE and VisiCalc

@ HHacker and humanistic goals at odds

& Gradual shift from programming to using
¥¥ BASIC vs. "'proper' engineering

Case Study #3
Software Engineering

Getting Programs to Behave

‘Programming in the early 1950s
was a black art, a private arcane
matter involving a programmer, a
oroblem, a computer, and perhaps a

small library of subroutines and a Fortran

primitive assembly program.’

John Backus (1976)

Debugging TX-0

UT3, FLIT, DDT

Search memory,
modify program in
numeric, later
symbolic, codes

'Far from completely
described even in
internal memoranda’

Debugging Epoch Opens (1965)

Limiting factors for computing x’ o=

e Hardware until mid-1950s
e Programming until mid-1960s
e \What now? Now: debugging.

COin: oers

and automation

Terminology in the 1960s

e Program checkout - check it works!
e Debugging - programs actually run
e [esting - programs solve the problem

On-line Debugging (1966)

"With some care, it has been possible (..)

to find a bug while at a breakpoint in running
a test case, call the editor to make a
correction, run the program on a simpler
test case to verify the correctness (...
resume execution of the original test case..

Debugging & Testing Controversies

Niklaus Wirth (1969)

My worry is that the facility of guick
response leads to sloppy working habits’

Edsger Dijkstra (1971-3)

‘Program testing can be used very
effectively to show the presence of
bugs but never to show their absence.’

Testing over Time
Shifting Meaning of Testing

Show that programs work (before 1978)
|~ Testing as a process phase (since 1970s)
B Finderrorsin programs (after 1978)

= lestasanengineering tool (since 1990s)

Debugging today?

mandeljs
4 VARIABLES

4 Local

mandel() {

| Similarto 1960s
. L earned through practice
Hacker culture only

w; J++) {

4 WATCH

s No inter-cultural artifact?

mancelys [l

&

Y

4 BREAKPOINTS

© musa/dbg_cosure & Q0 AC n17.Col1 Spacesd UTF8 IF JmaScript @

Conclusions
Cultures of Programming

Cultures Shape Programming

Programming languages

e Mathematization a good political mMove | g muwas
e Programming languages vs. systems

. . wupUTER BOYS
Software engineering

e [est becomes a multi-cultural entity
e Also types, but not debugging!

Interactive programming

e Breaks managerial & engineering needs
e Hard to study mathematically

Cultures of Programming
Revealing Patterns in History

®) Cultures meet and collaborate

© Cultures clash over principles

23 Concepts shift between cultures

W Struggle for control over programming

Conclusions

Cultures of Programming

e Define basic assumptions and ways of working
e Surprisingly stable over the /0 year history
e Still shape teaching, hiring, safety today

Tomas Petricek, Charles University
¥ (omas@tomasp.net

© nitps//tomasp.net

¥ (Wtomaspetricek

mailto:tomas@tomasp.net
https://tomasp.net/
http://twitter.com/tomaspetricek

