
Cultures of Programming
A Look at the History of Programming

Tomas Petricek, Charles University
✉

tomas@tomasp.net
https://tomasp.net
@tomaspetricek

mailto:tomas@tomasp.net
https://tomasp.net/
http://twitter.com/tomaspetricek

Introduction
Cultures of Programming

Twist the Lion's Tail

Implemented new code
replacing the "Power Peg",
deployed the change and
enabled a �ag to turn it on.

Deployment failed, running
old untested code. Rollback
only made it worse!

What should have been
done to prevent this?

Counterfactual Speculations (1/2)

Mathematical Culture
"Formal Veri�cation of Financial
Algorithms, Progress and Prospects"
The bug was not in the algorithm

Engineering Culture
"Had [they] implemented an automated deployment
system [the error] would have been avoided."
Cautionary tale of the DevOps movement

Counterfactual Speculations (2/2)

Managerial Culture
"system of risk management controls and
supervisory procedures not reasonably
designed" as required by the rule 15c3-5

Hacker and Humanistic Cultures
How can it take 45 minutes to stop it?
Automated trading is not in line
with augmenting human intellect

Cultures of Programming
What is this talk about

 Multi-disciplinary origins of programming
 Cultures remain surprisingly stable over time
 Interesting things happen when they meet
 Useful �ction for understanding the history

Case Study #1
Mathematization of Programming

Programming
in the 1940s

Planning the
computation and
wiring cables

No idea of a
programming
language!

Making Programming Easier

Hacker tricks (late 1940s)
Pseudo-instructions
Translated or interpreted

Mathematical theories (late 1950s)
Chomsky's work on formal grammars

Managerial needs (1950s)
Computer installation managers
Need cross-machine compatibility

When technology
became language
(Nofre, Priestley, 2014)

Meeting of hacker,
mathematical and
managerial culture!

Birth of a single uni�ed
way of thinking?

Languages of the 1950s
Di�ferent cultures think di�ferently

 COBOL - Common business-oriented language
 ALGOL - Formal mathematical language
 LISP - Symbolic manipulation with interactivity

Goto Considered
Harmful
(Dijkstra, 1968)

Engineering
Code di�cult to
understand

Mathematical
Breaks compositional
reasoning

Structured Programming
A better way of organizing code

 Coined by Dijkstra a year later in 1969
☑ Intended as a good programming practice
 Code corresponds to execution logic
 Later generalized to structured data

Structured
Programming

Chief programmer
teams methodology

Adapts the idea for
management purposes

Organizing code vs.
Organizing people

Culture Clash

Dijkstra disapproves
American "management philosophy
aiming at making companies as
independent as possible of the
competence of their employees"

Anti-intellectualism characterized by
"How to program if you cannot."

Good code as part of engineering dignity!

Clashes & Collaborations
Proofs and social processes (1977)

 Proofs lack social processes of mathematics!
 A political pamphlet from the middle ages!
 Cleanroom methodology to ensure proofs check
 Proof assistants check proofs mechanically

Case Study #2
Interactive Programming

Batch processing

Adopted when big 1940s
computers became useful

Pass your stack of cards
to the operator, wait
hours/days for the result...

Ine�cient, but the
norm in the 1950s

MIT TX-0
"Hackers"

Built for testing, loaned
to MIT RLE in 1958

Used interactively
through terminal

Available in time slots
24 hours per day

Interactive Programming
Struggles in the 1960s

 Low performance LINC computer for $43,000
 Interactive time-sharing systems via terminals
 "The Mother of All Demos" talk in 1968
 Computers slowly become more affordable...

Smalltalk (1970s)

Innovative system

Graphical interface
Object-oriented

Humanistic vision

Programming for kids
Personal dynamic medium
Self-modi�able

Commercialization

Xerox Star (1981)
Adopts the graphical display
Adopts "icons" and "desktop"
Closed end-user applications!

Commercial Smalltalk
Adopted in the 1990s in banks
Collaboration and IP protection hard
Inspired modern development practices

Interactive
Programming
Strikes Back

Microprocessors make
it possible to build
computers cheap
enough for everyone

They do not do much!

The 1977 trinity

Three minicomputers
Widely accessible
Commodore PET, Apple, TRS-80

Hacker style of programming
Start in interactive BASIC
Copy programs from magazines
Write code to load & run programs
Actually accessible to (many) kids

Interactive Programming
Struggles in the late 1970s

 Killer apps like dBASE and VisiCalc
 Hacker and humanistic goals at odds
 Gradual shift from programming to using
 BASIC vs. "proper" engineering

Case Study #3
So�tware Engineering

Getting Programs to Behave

"Programming in the early 1950s
was a black art, a private arcane
matter involving a programmer, a
problem, a computer, and perhaps a
small library of subroutines and a
primitive assembly program."

John Backus (1976)

Debugging TX-0

UT3, FLIT, DDT

Search memory,
modify program in
numeric, later
symbolic, codes

"Far from completely
described even in
internal memoranda"

Debugging Epoch Opens (1965)

Limiting factors for computing
Hardware until mid-1950s
Programming until mid-1960s
What now? Now: debugging.

Terminology in the 1960s
Program checkout - check it works!
Debugging - programs actually run
Testing - programs solve the problem

On-line Debugging (1966)

"With some care, it has been possible (..)
to �nd a bug while at a breakpoint in running
a test case, call the editor to make a
correction, run the program on a simpler
test case to verify the correctness (...)
resume execution of the original test case.."

Debugging & Testing Controversies

Niklaus Wirth (1969)
"My worry is that the facility of quick
response leads to sloppy working habits"

Edsger Dijkstra (1971-3)
"Program testing can be used very
effectively to show the presence of
bugs but never to show their absence."

Testing over Time
Shi�ting Meaning of Testing

☑ Show that programs work (before 1978)
 Testing as a process phase (since 1970s)
❎ Find errors in programs (after 1978)
 Test as an engineering tool (since 1990s)

Debugging today?

Similar to 1960s
Learned through practice
Hacker culture only

No inter-cultural artifact?

Conclusions
Cultures of Programming

Cultures Shape Programming

Programming languages
Mathematization a good political move
Programming languages vs. systems

Software engineering
Test becomes a multi-cultural entity
Also types, but not debugging!

Interactive programming
Breaks managerial & engineering needs
Hard to study mathematically

Cultures of Programming
Revealing Patterns in History

 Cultures meet and collaborate
 Cultures clash over principles
 Concepts shift between cultures
 Struggle for control over programming

Conclusions

Cultures of Programming
De�ne basic assumptions and ways of working
Surprisingly stable over the 70 year history
Still shape teaching, hiring, safety today

Tomas Petricek, Charles University
✉

tomas@tomasp.net
https://tomasp.net
@tomaspetricek

mailto:tomas@tomasp.net
https://tomasp.net/
http://twitter.com/tomaspetricek

