The Unix Executable as a
Smalltalk Method

Draft talk for Onward! Essays at SPLASH25, Oct 16-18
Joel Jakubovic

The “Executable File” is secretly a Smalltalk method in disguise.

Programming System = Language + Everything Else

Language

Compiler

Editor a.k.a. “programming environment”
Libraries

Debugger

etc

Smalltalk System = Smalltalk Lang + Everything Else

Projects Tools Apps Do Extras Windows Help HomeProject | \ 00:28:03
" ToolBuilder-Morphic: PluggableButtonMorphPlus System Browser: MyWindow
ProtoObject --all -- action Refactoring-Critics-BlockRules Window —-all -- ildWith:
Object ccessil action: Refactoring-Critics-ParseTree) as yet unclassified
] Morph action # enabled Refactoring-Critics-Transform
Control P4~/ PluggableButtonMorph debug menu enabled: ||Refactoring-Spelling
_Q_Pﬂgg_alleﬁg;__t‘ml\dwm drawing getColorSel¢|RefactoringTools
Edit Stre event handling getColorSel Con:‘igurationOf/ Kernel-Methods: Context
. i — ! "f;n_ableds RoelTyper-Core ProtoObject --all -- aboutToReturn:through:)
S ge Workspace - 06 PA—‘“ RoeITyper:Pharc Object *60Deprecated-controlling activateMethod:withArgs:receiy
21l lwnd := SystemWindow new. wnd. ig RoelTyper-Sque: InstructionStream *Tools-Inspector | activateMethod:withArgs:receir
actior \wnd setLabel: 'Control Panel'. ROEIType'j'TEStS Context *Tools-debugger access activateReturn:value:
ac| |t1 := StaticTextMorph new. t1 newContents: 'Edit Strength:'. Ocompletion ContextPart | || accessing activeHome
an an addMOl’philzl- gzg:g::zz:ig BlockContext | closure support activeOuterContext
ac iwnd openinWorld. = g i Y S controllin actualStackSize
t1 position: (wnd position + (50@50)). Ocompletion-EC nstance L gass) @ i -

b := PluggableButtonMorphPlus new.

wnd addMorph: b.

b label: 'Preferred'.

b position: (t1 topRight + (10@0)).

b2 := PluggableButtonMorphPlus new.

wnd addMorph: b2.

b2 label: 'Required'.

b2 position: (b topRight + (10@0)).

t2 := StaticTextMorph new. t2 newContents: 'GridX:".

ar2/1

wnd addMorph: t2.

t2 position: (t1 bottomLeft + (0@10)).
wnd extent: 380@150.

:= GridLayoutTest new.
g setUp.
g testO5AdhereToEdge

ToolBuilder build: MyWindow new.
myLocal
Context

bo

plore

Cassowary-Kern

ToolBuilder tests

Cassowary-Tests
Cassowary-Dem

[' browse

)

buildWith: builg
window := b

n

c|

Y|
textSpec :=

n|

f

window child

~ builder bu |

OcompletionSqu [

browse JL senders TlLimplementors]L versions J\ inhe

e \L hierarchy)[variables jl source

Process inspector. Stepping in the debugger is done by sending messages to contexts to get them to
execute their bytecodes. See methods in the instruction decoding protocol.

Contexts, though normal in their variable size, are actually only used in two sizes, small and large, which
are determined by the temporary space required by the method being executed.

Contexts must only be created using the method newForMethod:. Note that it is impossible to determine
the real object size of a Context except by asking for the frameSize of its method. Any fields above the
stack pointer (stackp) are truly invisible -- even (and especially!) to the garbage collector. Any store into
stackp other than by the primitive method stackp: is potentially fatal.

(*) efficient virtual machines create contexts lazily on demand, avoiding the overhead of creating them
on every message send and of copying receiver and arguments from sender context to caller context.
This optimization is invisible to the Smalltalk system.

class comment for Context - eem 4/4/2017 17:45

Smalltalk System = Smalltalk Lang + Everything Else

Projects Tools Apps Do Extras Windows Help HomeProject | \ 00:28:03
ToolBuilder-Morphic: PluggableButtonMorphPlus System Browser: MyWindow
ProtoObject --all -- action Refactoring-Critics-BlockRules Window - alll - ildWith:
Object ccessil = action: Refactoring-Critics-ParseTree as yet unclassified
] Morph action # enabled Refactoring-Critics-Transform
53| PluggableButtonMorph debug menu enabled: Refactoring-Spelling
& PluggableButtonMorphPlus | drawing getColorSel RefactoringToolg
event handling getColorSel¢| ConfigurationOf Kernel-Methods: Context
—linitial ! ”:;n_abledE RoelTyper-Core ProtoObject --all -- aboutToReturn:through: @
iiasi RoelTyper-Pharg Object *60Deprecated-controlling activateMethod:withArgs:receiv
nd := SystemWindow new. wnd. RoelTyper-Sque: InstructionStream *Tools-Inspector | activateMethod:withArgs:recei
nd setlabel: ‘Control Panel". RoeiTyper:Tests Context *Tools-debugger access activateReturn:value:
:= StaticTextMorph new. t1 newContents: 'Edit Strength:'. Ocomplet!on ContextPart | || accessing activeHome
nd addMorph: t1. gzg:g::zz:ig BlockContext || closure support activeOuterContext
nd openinWorld. K i Y 3 controllin actualStackSize
i pos?tion: (wnd position + (50@50)). Ocompletion-EC||__ instence | closs) @ . - +
:= PluggableButtonMorphPlus new. OcompletionSqul’ browse JL senders TlLimplementors]L versions J\ inhe ce \L hierarchy J[variables j l source
nd addMorph: b. La n u a e Cassov«{ary-Kern Process inspector. Stepping in the debugger is done by sending messages to contexts to get them to
label: 'Preferred'. g g ToolBuilder tests | o ocyte their bytecodes. See methods in the instruction decoding protocol.
position: (t1 topRight + (10@0)). Cassowary-Tests
2 := PluggableButtonMorphPlus new. Cassowary-Dem|| contexts, though normal in their variable size, are actually only used in two sizes, small and large, which
nd addMorph: b2. [' browse J[are determined by the temporary space required by the method being executed.
2 Inbek ‘Rigated. buildWith: build
2 position: (b topRight + (10@0)). wirdew st Contexts must only be created using the method newForMethod:. Note that it is impossible to determine
R := StaticTextMorph new. t2 newContents: 'GridX:".) il the real object size of a Context except by asking for the frameSize of its method. Any fields above the
nd addMorph: t2. i stack pointer (stackp) are truly invisible -- even (and especially!) to the garbage collector. Any store into
R position: (t1 bottomLeft + (0@10)). stackp other than by the primitive method stackp: is potentially fatal.
nd extent: 380@150. b F— :=Y

n (*) efficient virtual machines create contexts lazily on demand, avoiding the overhead of creating them
£ On every message send and of copying receiver and arguments from sender context to caller context.
This optimization is invisible to the Smalltalk system.

:= GridLayoutTest new.
setUp.
testO5AdhereToEdge

window child
~ builder bui|class comment for Context - eem 4/4/2017 17:45

Everything else

oolBuilder build: MyWindow new.

ystem = Many Programming Systems

jamie@unix:~

jamie@unix
Arch Linux
Nitro AN515-55 V2.06
L 5.18.5-hardened1-2-hardened
1h 1im

Terminal

menu - preset * 08:23:36 BATE 100%
i7-10756H
CPU mmm
ce
c1

- 2008ms +

3,6 GHz

mem proc - filter tree < cpu lazy >

Total: 15.4 GiB : Program User: MemB
V ¥

*net auto - zero <b wlan® n>
download
v
A
upload
select ¢

cpu% 1

@® main.cpp - code - Code - 0SS

Unix System = Many Programming Systems

@® main.cpp - code - Code - 0SS

Terminal

‘cpu menu P * 5 36 BATE 100%
i7-10756H
CPU mmm
C
c1
.

mem proc €
Total: 15.4 GiB Pid:
; 3

) <b wlan@ n>
download

4
upload

Unix, Plan 9 and the Lurking Smalltalk

Stephen Kell

Kell, S. (2018). Unix, Plan 9 and the Lurking
Smalltalk. In: De Mol, L., Primiero, G. (eds)
Reflections on Programming Systems.
Philosophical Studies Series, vol 133.
Springer, Cham.
https://doi.org/10.1007/978-3-319-97226-8 6

Abstract High-level programming languages and their virtual machines have long
aspired to erase operating systems from view. Starting from Dan Ingalls’ Smalltalk-
inspired position that “an operating system is a collection of things that don’t fit
inside a language; there shouldn’t be one”, I contrast the ambitions and trajectories
of Smalltalk with those of Unix and its descendents, exploring why Ingalls’s vision
appears not (yet) to have materialised. Firstly, I trace the trajectory of Unix’s “file”
abstraction into Plan 9 and bevond. noting how its logical extranolation suggests a

Smalltalk: Visionary, Influential, Designed ... yet Niche

Kell: “Smalltalk, by contrast [to Unix], is easier to miss in modern systems. As a
language, today it finds only niche interest. Its key programmatic concepts, namely
classes and late-bound “messaging”, have had an enormous influence on popular
languages; this is clearest in highly dynamic class-based languages such as
Python and Ruby, but is easily discernible in Java and C++, among many others.
The rich user interface it presented to the programmer has also influenced
countless modern “integrated” development environments. Despite this
considerable influence, something seems to have been lost: anecdotally,
enthusiasts are quick to point out that none of these contemporary languages or
environments matches the simplicity, uniformity or immediacy of a Smalltalk
system.”

Unix: Evolved, Viral, Convenient ... but Lacking

Kell: “Unix is, infamously, a survivor—even satirised as the world’s first computer
virus. Its design remains ubiquitous: not only in its direct-descendent commodity
operating systems (e.g. GNU/Linux), but as a key component of others (Apple’s

Mac OS) and a clear influence on the remainder.”

This suggests a “Generalised Unix” (Linux, Mac, Windows):

Software tends to be organised as a collection of large-ish files and processes,
each of which contains significant sub-structure, which can be encoded
differently in each case

(Kell's “fragmentation” of file + runtime data formats)

Kell: Help Unix Complete its Evolution!

e Highly recommended reading. Summary:

e Kell's “Smalltalk Wishlist”: Programmatic+Descriptive Availability, Interposable
Bindings

e They sort-of already exist in Unix ...

e ... but fragmented, half-baked, falling frustratingly short of Smalltalk.

e Because Unix evolved...

e \Which was key to its viral success over Smalltalk.

e Kell wants to further this evolution, following Plan 9 (“sequel” to Unix).

e Crucially: do so maintaining plurality of languages/abstractions/views.

e “Oh but you now have program this particular way”: not allowed!

e Sorry Stephen...

Preliminary Points

e Ignore superficial differences e.g. names. Searching for similar “shape”,
similar structure, similar behaviour.

e Compare Unix and Smalltalk as “equals”. How each looks on its own terms,
not how it appears when emulated in the other system.

Unix Smalltalk Unix Smalltalk

Smalltalk Unix

X confusing ¥ confusing like-for-like

Programming Systems are Dynamical Systems

A L :> \5
V',
s,
Q,',‘,./"/b‘;;:"’f
0= s f
=

Initial state
Programming
System (complex)
Decomposes into
sub-systems

Interesting State = Persistent State

-

>l Ti
, i

i3

Unix vs. Smalltalk: persistent sub-system evolution

Unix

Unix vs. Smalltalk: persistent sub-system evolution

Unix Smalltalk

Unix vs. Smalltalk: persistent sub-system evolution

Unix Smalltalk

Unix vs. Smalltalk: persistent sub-system evolution

Unix Smalltalk

Unix vs. Smalltalk: persistent sub-system evolution

Jnix Kell: “It now seems Smalitalk

reasonable to declare
“file” and “object” as

> synonymous. Both are
: equally universal,
more-or-less
y, semantics-free, and

deliberately so.”

g .o

Unix vs. Smalltalk: transient sub-system evolution

Unix

Unix vs. Smalltalk: transient sub-system evolution

% D;)
|)f@'

Private address space
(require debug APIs)

Unix vs. Smalltalk: transient sub-system evolution

Unix

Smalltalk

| yols2]

Private address space
(require debug APIs)

oy
B

)r@r Vake @

Unix vs. Smalltalk: transient sub-system evolution

Unix Smalltalk

g 15 G
@

Private address space Normally hidden from user(%4
(require debug APls) (require reflection APIs)

Unix vs. Smalltalk: fragmentation vs. uniformity

Smalltalk

width: —
height:

color:
" a \

R

Reflection: enumerate slots

Unix vs. Smalltalk: fragmentation vs. uniformity

Unix file

0x0000: 4D
0x0001: 5A
0x0002: 00
0x0003: 00
0x0004: 32
0x0005: 7C

Smalltalk object

_—V
X: //'
y, — |
width: —
height: I
color:
\

Reflection: enumerate slots

Unix vs. Smalltalk: fragmentation vs

Unix file

0x0000: 4D
0x0001: 5A
0x0002: 00
0x0003: 00
0x0004: 32
0x0005: 7C

x=10
y=20

{*x”: 10, “y”: 20}

N

<entry name="x
value="10" />

. uniformity

Smalltalk object

_—V
« //'
y, — |
width: —
height: I
color:
\

Reflection: enumerate slots

Unix vs. Smalltalk: fragmentation vs. uniformity

Unix file

0x0000: 4D
0x0001: 5A
0x0002: 00
0x0003: 00
0x0004: 32
0x0005: 7C

x=10
y=20

{*x”: 10, “y”: 20}

N

<entry name="x
value="10" />

Now add in all the
binary encodings...!

Smalltalk object

_—V
X: //'
y, — | o
width: —
height: —
color:
\

Reflection: enumerate slots

Kell’'s Fragmentation & “Large Objects”

Kell: “Unix processes happily “accommodate” diverse implementations of
language-level abstractions, albeit in the weakest possible sense: by being
oblivious to them. (...) Each language implementation must adopt its own
mechanisms for object binding and identity, i.e. conventions for representing and
storing object addresses. (...) Another way of looking at this is that the operating
system concerns itself with /arge objects only.”

Unix file/process Smalltalk objects/methods

N —

Directories = Objects?

Kell: “This unifying filesystem abstraction includes names and other metadata for
all such entities, along with enumerable directory structures. Although primitive,
this is clearly a metasystem. For instance, enumeration of files in a directory
corresponds closely to enumeration of slots in an object, as expressible using the
Smalltalk meta-object protocol.”

Directories = Objects?

Unix directory Smalltalk object
—v —
v //' . //'
y —] —> y: — | —>
width — width: —
height o height: —>
color color:
\ \

readdir(): enumerate entries s
Graph structure (symlinks) Reflection: enumerate slots
No fragmentation!

ProcFS

:~$ tree /proc

arch status

current
E ey Exception that proves the rule...
current Most structured data in Unix is not
exec

fscreate “exploded” into directories and files.

keycreate
prev

(That's what Plan 9 does instead.)

L— current
sockcreate
autogroup
auxv
cgroup
clear refs
cmdline
comm
coredump filter

Generalised Unix vs. Generalised Smalltalk
“Generalised Unix”: organising software as a collection of large-ish files and
processes with significant + heterogenous internal structure.

“Generalised Smalltalk”: organising software as a graph of millions of small
objects and method (activations) with uniform structure.

Large Processes, Small Methods

Smalltalk method activation

args

temps

message receiver

bytecode

Large Processes, Small Methods

Unix process

argv
Stack!
main()
/ \
/ \
foo() bar()

Smalltalk method activation

args

temps

message receiver

bytecode

Smalltix: Huge Numbers of Tiny Files and Processes

Smalltalk

Object graph
via VM primitives

aCross
bounds
owner
submorphs
color

(class) ’)

SBECrossMorph
tsuperclass
(methods)
horBar

verBar
drawOn:

containsPt:

n:1

Smalltix

Directory graph
via FS syscalls

4865/ symlinks
bounds — 3921/
owner —> 6589/
submorphs — 1845/
color — 9823/

claisQ

7832/
tsuperclass —> 6755/
methods/
horBar *
verBar **
drawOn: *
containsPt: %

X

X

Smalltalk In Unix

Object graph within binary file
and process heap

squeak-cog-spur-64-img B

010
101
010

aCross
bounds
owner
submorphs
color

(class) /)

SBECrossMorph
superclass
(methods)

horBar
verBar
drawOn:
containsPt:

Four Favourite Features of Smalltalk

Persistence! Uniformity! GUI Openness!

() System Browser: SBECrossMorph 000
W " =all=_............ | #*containsPoint: '
Morph!cTests-LemetsL as yet unclassified #+ drawOn:

orphicTests-Layou private

‘MyMorphs verBar

MorphicTests-Support S
MorphicTests-Text Sug class || ? |
(browse)L senders j(lmplementorsj(versions JL inheritance jL hierarchy)L variables J source

horBar
| crossHeight |

crossHeight := self height / 3.0. Dvhamic code datina!
~ self bounds insetBy: 0 @ crossHeight y up g

JD) 4/24/2025 13:55 - unknown author - private - 1 implementor - only in change set HomeProjec

D

Four Favourite Features of Smalltalk (3 already in Unix!)

Persistence! Uniformity! GUI Openness!*
(*only via Smalltix)
furite() /proc/123
fflush() |- cmdline main_window/
|- cpu |- info_pane/
|- fd |- titlebar/
|- maps |- submit_btn/
|- mem |- close_btn/
Dynamic code updating! |- scrollbar/

vim application.c
make application
./application

Improvising Unix into a Smalltalk VM

Hijack the filesystem as object storage.

Hijack the program loader as a “method activator”.

Improvising Unix into a Smalltalk VM

Hijack the filesystem as object storage.

Hijack the program loader as a “method activator”.

WATCH AND TREMBLE... (demo)

Squeak By Example “SBECrossMorph”

7 verticalBar := self bounds insetBy: crossWidth@0.
8 aCanvas fillRectangle: horizontalBar color: self color.
9 aCanvas fillRectangle: verticalBar color: self color.

- QO0E

o |
®
- @

@ .

SBECross
Figure 12.3: A SBECrossMorph with its halo; you can resize it as you wish.

Sending the bounds message to a morph answers its bounding box,
which is an instance of Rectangle. Rectangles understand mahy Messages

)

EXPLORER

Vv SMALLTIX
Vv objects
Vv aCross
bounds
class
Vv boundsRect
class
corner
origin
Vv brPoint
class
X
By
Vv Morph
Vv methods
bounds
height

= citnarclacs

> OUTLINE
TIMELINE

i) README.md $ send $ horBar

objects > SBECrossMorph > methods > $ horBar

self=%$1

tmpl=$(./send $self height)
tmp2=$(./send $tmpl / float/3.0)
crossHeight=$(./send $tmp2 rounded)
tmp4=$(./send int/@ @ $crossHeight)
tmp5=$%$(./send $self bounds)

./send $tmp5 insetBy- $tmp4

@ drj@JoelZ13: ~/repos/smalltix X + | ¥

X

= O

$ aRect=$(./send aCross horBar)[j

X

@ EXPLORER i) README.md $ send

vsMALL.[T B3 O B objects > obj4 > = class
v objects il Rectangle
Vv Morph
v methods
= bounds
= height
= superclass
> obj1
> obj2
> obj3
Vv obj4
class

€ drj@JoelZ13: ~/repos/smalltix X SE
corner

+++++++++ [[objd == \i\n\t 1]
" ob +++t+++++ [[objt == \F\l\o\a\t 1]
Ject ++++++++++ . /bind obju setOrigin-corner-
Vv methods +++++++++ method=Rectangle/methods/setOrigin-corner-
L Rectangle/methods/setOrlgln corner- obj4 obj2 obj3

= basicNew
o) $ echo $aRect
= ohiCaunter Obju

> OUTLINE . $ 1l
T > TIMELINE

origin

Doesn't strictly have to be Smalltalk...

All programming systems (even Smalltalk!) speak “filesystem” under Unix
hegemony.

Executable binaries can be compiled from any language.

Executable scripts can be written in any language.

Language-agnostic (for free) down to the “method” level.

Unix Process = Specialised Method Tree Activator?

Smalltalk/Smalltix

method objects

calls

7

references

other objects

Unix

+x [\

format B

A 4

format B

=~

Four Favourite Features of Smalltalk

Persistence! Uniformity! GUI Openness!

() System Browser: SBECrossMorph 000
W " =all=_............ | #*containsPoint: '
Morph!cTests-LemetsL as yet unclassified #+ drawOn:

orphicTests-Layou private

‘MyMorphs verBar

MorphicTests-Support S
MorphicTests-Text Sug class || ? |
(browse)L senders j(lmplementorsj(versions JL inheritance jL hierarchy)L variables J source

horBar
| crossHeight |

crossHeight := self height / 3.0. Dvhamic code datina!
~ self bounds insetBy: 0 @ crossHeight y up g

JD) 4/24/2025 13:55 - unknown author - private - 1 implementor - only in change set HomeProjec

D

GUIs should not be stuffed into a single method!

() System Browser: SBECrossMorph 000
. a| M # containsPoint:
morp:!ciesz-lferneltst‘_, as yet unclassified #+ drawOn:
orphicTests-Layou private

W—‘ verBar
MorphicTests-Support — S

MorphicTests-Text Suy HQC'& U?

k browse Jk senders JLImplementorsj(versions)k inheritance)L hierarchy JL variables J source

mylInteractiveGUIApplication: argv

(10,000 lines of code including an event loop)
(all GUI components are local temporary variables)

JD) 4/24/2025 13:55 - unknown author - private - 1 implementor - only in change set HomeProjec

Conclusion

e Smalltalk is nice, but we’re stuck with Unix.

e Abstract similarity: directories=objects, executables=methods,
processes=activations.

e Concrete size discrepancy. Fragmentation. Files/processes heavyweight
“large objects”, unlike fine-grained Smalltalk objects/activations.

e |If we try Smalltix anyway, we get Smalltalk conveniences for free: persistence,
uniformity, dynamic software updating, GUIl openness.

e Promising practical experiments!

e Interesting research paths in optimising away the scary overhead!

