
The Unix Executable as a
Smalltalk Method

Draft talk for Onward! Essays at SPLASH’25, Oct 16-18
Joel Jakubovic

The “Executable File” is secretly a Smalltalk method in disguise.

Programming System = Language + Everything Else

● Language
● Compiler
● Editor
● Libraries
● Debugger
● etc

a.k.a. “programming environment”

Smalltalk System = Smalltalk Lang + Everything Else

Smalltalk System = Smalltalk Lang + Everything Else

Language

Everything else

Unix System = Many Programming Systems

Unix System = Many Programming Systems

etc…

Kell, S. (2018). Unix, Plan 9 and the Lurking
Smalltalk. In: De Mol, L., Primiero, G. (eds)
Reflections on Programming Systems.
Philosophical Studies Series, vol 133.
Springer, Cham.
https://doi.org/10.1007/978-3-319-97226-8_6

Smalltalk: Visionary, Influential, Designed … yet Niche

Kell: “Smalltalk, by contrast [to Unix], is easier to miss in modern systems. As a
language, today it finds only niche interest. Its key programmatic concepts, namely
classes and late-bound “messaging”, have had an enormous influence on popular
languages; this is clearest in highly dynamic class-based languages such as
Python and Ruby, but is easily discernible in Java and C++, among many others.
The rich user interface it presented to the programmer has also influenced
countless modern “integrated” development environments. Despite this
considerable influence, something seems to have been lost: anecdotally,
enthusiasts are quick to point out that none of these contemporary languages or
environments matches the simplicity, uniformity or immediacy of a Smalltalk
system.”

Unix: Evolved, Viral, Convenient … but Lacking

Kell: “Unix is, infamously, a survivor—even satirised as the world’s first computer
virus. Its design remains ubiquitous: not only in its direct-descendent commodity
operating systems (e.g. GNU/Linux), but as a key component of others (Apple’s
Mac OS) and a clear influence on the remainder.”

This suggests a “Generalised Unix” (Linux, Mac, Windows):
Software tends to be organised as a collection of large-ish files and processes,
each of which contains significant sub-structure, which can be encoded
differently in each case

(Kell’s “fragmentation” of file + runtime data formats)

Kell: Help Unix Complete its Evolution!

● Highly recommended reading. Summary:
● Kell’s “Smalltalk Wishlist”: Programmatic+Descriptive Availability, Interposable

Bindings
● They sort-of already exist in Unix …
● … but fragmented, half-baked, falling frustratingly short of Smalltalk.
● Because Unix evolved…
● Which was key to its viral success over Smalltalk.
● Kell wants to further this evolution, following Plan 9 (“sequel” to Unix).
● Crucially: do so maintaining plurality of languages/abstractions/views.
● “Oh but you now have program this particular way”: not allowed!
● Sorry Stephen…

Preliminary Points

● Ignore superficial differences e.g. names. Searching for similar “shape”,
similar structure, similar behaviour.

● Compare Unix and Smalltalk as “equals”. How each looks on its own terms,
not how it appears when emulated in the other system.

Unix

Smalltalk Unix

Smalltalk Unix Smalltalk

❌ confusing ❌ confusing ✅ like-for-like

Programming Systems are Dynamical Systems

?????

Initial state
Programming
System (complex)
Decomposes into
sub-systems

Interesting State = Persistent State

Unix vs. Smalltalk: persistent sub-system evolution

Unix

Unix vs. Smalltalk: persistent sub-system evolution

Unix Smalltalk

Unix vs. Smalltalk: persistent sub-system evolution

Unix Smalltalk

Unix vs. Smalltalk: persistent sub-system evolution

Unix Smalltalk

M

Unix vs. Smalltalk: persistent sub-system evolution

Unix Smalltalk

M

Kell: “It now seems
reasonable to declare
“file” and “object” as
synonymous. Both are
equally universal,
more-or-less
semantics-free, and
deliberately so.”

Unix vs. Smalltalk: transient sub-system evolution

Unix

Unix vs. Smalltalk: transient sub-system evolution

Unix

Private address space ✅
(require debug APIs)

Unix vs. Smalltalk: transient sub-system evolution

Unix Smalltalk

Private address space ✅
(require debug APIs)

Unix vs. Smalltalk: transient sub-system evolution

Unix Smalltalk

Private address space ✅
(require debug APIs)

Normally hidden from user✅
(require reflection APIs)

Unix vs. Smalltalk: fragmentation vs. uniformity

Smalltalk

x:
y:
width:
height:
color:
…

Reflection: enumerate slots

Unix vs. Smalltalk: fragmentation vs. uniformity

Smalltalk object

x:
y:
width:
height:
color:
…

Reflection: enumerate slots

Unix file

0x0000: 4D
0x0001: 5A
0x0002: 00
0x0003: 00
0x0004: 32
0x0005: 7C
…

Unix vs. Smalltalk: fragmentation vs. uniformity

Smalltalk object

x:
y:
width:
height:
color:
…

Reflection: enumerate slots

Unix file

0x0000: 4D
0x0001: 5A
0x0002: 00
0x0003: 00
0x0004: 32
0x0005: 7C
…

x=10
y=20

{“x”: 10, “y”: 20}

<entry name=”x”
value=”10” />
…

Unix vs. Smalltalk: fragmentation vs. uniformity

Smalltalk object

x:
y:
width:
height:
color:
…

Reflection: enumerate slots

Unix file

0x0000: 4D
0x0001: 5A
0x0002: 00
0x0003: 00
0x0004: 32
0x0005: 7C
…

x=10
y=20

{“x”: 10, “y”: 20}

<entry name=”x”
value=”10” />
…

Now add in all the
binary encodings…!

Kell’s Fragmentation & “Large Objects”

Kell: “Unix processes happily “accommodate” diverse implementations of
language-level abstractions, albeit in the weakest possible sense: by being
oblivious to them. (…) Each language implementation must adopt its own
mechanisms for object binding and identity, i.e. conventions for representing and
storing object addresses. (…) Another way of looking at this is that the operating
system concerns itself with large objects only.”

Smalltalk objects/methodsUnix file/process

Directories = Objects?

Kell: “This unifying filesystem abstraction includes names and other metadata for
all such entities, along with enumerable directory structures. Although primitive,
this is clearly a metasystem. For instance, enumeration of files in a directory
corresponds closely to enumeration of slots in an object, as expressible using the
Smalltalk meta-object protocol.”

Directories = Objects?

Smalltalk object

x:
y:
width:
height:
color:
…

Reflection: enumerate slots

Unix directory

x
y
width
height
color
…

readdir(): enumerate entries
Graph structure ✅ (symlinks)
No fragmentation!

ProcFS

Exception that proves the rule…
Most structured data in Unix is not
“exploded” into directories and files.

(That’s what Plan 9 does instead.)

Generalised Unix vs. Generalised Smalltalk

“Generalised Unix”: organising software as a collection of large-ish files and
processes with significant + heterogenous internal structure.

“Generalised Smalltalk”: organising software as a graph of millions of small
objects and method (activations) with uniform structure.

Large Processes, Small Methods

Smalltalk method activation

args

temps

message receiver

…
bytecode

…

Large Processes, Small Methods

Smalltalk method activationUnix process

main()

foo() bar()

Stack!
.
.
.
.

argv args

temps

message receiver

…
bytecode

…

Smalltix: Huge Numbers of Tiny Files and Processes

Four Favourite Features of Smalltalk
Persistence!

Dynamic code updating!

Uniformity! GUI Openness!

Four Favourite Features of Smalltalk (3 already in Unix!)
Persistence!

Dynamic code updating!

Uniformity! GUI Openness!*
(*only via Smalltix)

fwrite()
fflush()

/proc/123
 |- cmdline
 |- cpu
 |- fd
 |- maps
 |- mem
 …

vim application.c
make application
./application

main_window/
 |- info_pane/
 |- titlebar/
 |- submit_btn/
 |- close_btn/
 |- scrollbar/
 …

Improvising Unix into a Smalltalk VM

Hijack the filesystem as object storage.

Hijack the program loader as a “method activator”.

Improvising Unix into a Smalltalk VM

Hijack the filesystem as object storage.

Hijack the program loader as a “method activator”.

WATCH AND TREMBLE… (demo)

Squeak By Example “SBECrossMorph”

Doesn’t strictly have to be Smalltalk…

All programming systems (even Smalltalk!) speak “filesystem” under Unix
hegemony.

Executable binaries can be compiled from any language.

Executable scripts can be written in any language.

Language-agnostic (for free) down to the “method” level.

Unix Process = Specialised Method Tree Activator?

Four Favourite Features of Smalltalk
Persistence!

Dynamic code updating!

Uniformity! GUI Openness!

myInteractiveGUIApplication: argv

GUIs should not be stuffed into a single method!

(10,000 lines of code including an event loop)
(all GUI components are local temporary variables)

Conclusion

● Smalltalk is nice, but we’re stuck with Unix.
● Abstract similarity: directories=objects, executables=methods,

processes=activations.
● Concrete size discrepancy. Fragmentation. Files/processes heavyweight

“large objects”, unlike fine-grained Smalltalk objects/activations.
● If we try Smalltix anyway, we get Smalltalk conveniences for free: persistence,

uniformity, dynamic software updating, GUI openness.
● Promising practical experiments!
● Interesting research paths in optimising away the scary overhead!

