
Contents

1 Implementation 2

1.1 Taint Analysis . 2

1.1.1 Taint Flow Representation 3

1.1.2 Taint Analyzer . 3

1.1.3 Avoiding In�nite Loops . 5

1.2 Weverca Analyzer Adjustments 6

1.3 Eclipse Plug-ins . 6

1.3.1 Requirements . 7

1.3.2 Architecture . 7

1.3.3 Plug-in Common . 8

1.3.4 Plug-in Metrics . 8

1.3.5 Plug-in ConstructSearch 9

1.3.6 Plug-in PHP_warnings . 9

1.3.7 Plug-in StaticAnalysis . 10

1.3.8 Plug-in StaticAnalysisWarnings 10

1.3.9 Plug-in StaticAnalysisVariables 12

1

1. Implementation

This chapter presents the implementation of our project. Since our project in-

volved both extending Weverca analyzer and contributing to the Eclipse IDE,

the chapter is divided into three separate parts. The �rst one explains imple-

mentation of taint analysis in Weverca analyzer, the second one depicts some

changes that had to be made in Weverca analyzer in order to implement the IDE

integration and the last one brie�y describes implementation of Eclipse plug-ins

and their connection to the analyzer.

1.1 Taint Analysis

The basic idea of taint analysis is to keep track of values that originate in user

input. As a result it is able to determine variables which are potentially in�uenced

by outside input (therefore have to be considered tainted) and warn the developer

when any of these variables is used to execute dangerous commands (such as

commands to an SQL database).

The most elementary version of taint analysis only propagates boolean values

indicating whether the variable is tainted or not. This approach does not �t our

intentions for we also want to determine all the potential sequences of assignments

from the source to the sink and distinguish between various taint �ags since

tainted variable may be sanitized (for example for usage in SQL commands).

This leads to a need for propagating the actual �ows and individual taint �ags.

Another useful information is whether all the possible paths lead to a tainted

value or there exists at least one safe path. And �nally, even though they do not

originate in user input, we also decided to propagate null and unde�ned values,

for it can indicate bugs in input �ltering and moreover it does not make any sense

to use variables with these values to execute a command.

Taint analysis described in this section is implemented in the Weverca.Taint

project. Unit tests for taint analysis are implemented in �le TaintAnalysisTest.cs,

which is part of Weverca.AnalysisFramework.UnitTest project. Abstract classes

that our taint analysis extends are from Weverca.AnalysisFramework project.

The taint analysis is implemented as a TaintForwardAnalysis class which is

derived from NextPhaseAnalysis abstract class described in section ??. All the

TaintForwardAnalysis needed to implement was intialization of tainted vari-

ables such as _POST, _GET, _REQUEST etc. The following subsections de-

scribe the taint analyser, which was implemented using the class TaintAnalyzer�

2

implementation of the class NextPhaseAnalyzer.

1.1.1 Taint Flow Representation

Taint �ow representation is called TaintInfo and it is always associated with a

speci�c program point. Each instance of TaintInfo contains multiple �elds:

1. A program point the instance is associated with.

2. A list of all possible taint �ows that lead to the associated program point.

This list contains pairs of TaintInfo information and VariableIdentifier

which identi�es the variable that the taint came from if such a variable

exists.

3. An indicator of three possible taint �ags�HTML taint, SQL taint and �le

path taint.

4. An indicator of priority for each taint type. The priority is high if all the

�ows that �ow into the program point have the corresponding taint �ag.

5. A null value indicator for determining �ows of null or unde�ned value.

6. A general taint indicator which determines whether there exists a �ow from

user input. This information is independent of the individual taint �ags

which could have been sanitized as described in section 1.1.2.

1.1.2 Taint Analyzer

The purpose of the TaintAnalyzer class is to de�ne behaviour for visiting various

types of program points. In this case it means de�ning an appropriate taint �ow

propagation and handling. The taint information is stored in program point's

InfoLevel input set and output set, all already described in section ??. In general,

there are only three operations that can be done with a taint information:

1. Merging and extending taint information

This involves merging all the taint information entering the program point

into one information extended by the current program point. The entering

taint information is collected di�erently for each program point, however

the actual merging is always done the same way. At �rst a new, initially

untainted, taint information is created for the current program point. Af-

terwards, all the entering taint information is processed. One after another

all the instances of TaintInfo are stored in the list of possible taint �ows,

and their taint information is propagated�if any of them is tainted, has a

3

possible null value or has a speci�c taint �ag, the information is propagated

to the result. On the other side, if any information does not contain a high

priority indicator for a �ag, it is removed from the new TaintInfo instance

too. In the end, the newly created TaintInfo instance is produced.

2. Reporting the taint information

Reporting the taint information means merging the entering information

and possibly creating a warning out of it. A special type of warning -

AnalysisTaintWarning was implemented for the purpose of taint analy-

sis. It is derived from AnalysisWarning and contains additional taint �ow

information. All the created warnings are stored in a list accessible from

TaintForwardAnalysis. Warnings can be optionally based on a speci�c

taint �ag, for example in comparison to eval statement which reports any

�ow that originates in user input, echo() function only reports �ows that

have a HTML taint indicator set to true. Independently of the taint �ags,

when reporting a taint information with null value, a warning with null

�ows is created too.

3. Sanitizing the taint information

The user input always has all the possible taint �ags. Sanitizing the taint

information means removing one or more taint �ags when a special sanitiz-

ing function is called. The list of sanitizing functions contains for example

htmlentities() function which removes the HTML taint �ag, or md5()

function which removes all of them.

Both reporting and sanitizing requires the taint information to be merged �rst.

Merging has to be done because of multiple taint information entering the pro-

gram point, which is caused either by multiple variables contributing their taint

information (for example multiple function arguments) or by a single variable

having multiple TaintInfo values (caused for example by merging information

at join points of conditional branches).

As already mentioned, di�erent program point types have di�erent behaviour

for visiting implemented in TaintAnalyzer. To demonstrate how it works we

will describe a few examples:

• AssignPoint

This point represents an assign expression and contains two operands�

right operand and left operand. To propagate the taint, a right operand

taint information must be extended by this program point and stored in the

left operand's memory. To achieve this independently of the right operand

4

type (it may be, e.g., a variable, an expression, and a function call) the

right operand taint information is merged and then extended.

• EchoStmtPoint

EchoStmtPoint represents an echo statement which obviously requires re-

porting, for HTML tainted data should never enter the browser. At �rst,

the taint information is merged from all the parameters of echo statement.

If the merged taint information has a HTML taint �ag or possible null value,

a warning is created.

• NativeAnalyzerPoint

This point represents a native method call. The taint information of all the

arguments needs to be collected and merged. Then it is checked whether

the method is a sanitizer or a reporting function, if yes, the merged taint

information is appropriately handled. Finally the resulting taint informa-

tion is stored as a method return value, to be possibly processed later as

for example AssignPoint's right operand.

After a program point is processed, the NextPhaseAnalysis checks whether

the result of computation adds any new information to the information computed

the last time the program point was processed. If it is, all the following points

are added to the worklist to be processed. This brings up a question of in�nite

loops. In case of a cycle in the source code, it can easily happen that the taint

�ows will be extended by the same set of program points over and over again.

The way to avoid this situation is described in the following section.

1.1.3 Avoiding In�nite Loops

The decision whether to process a program point again is based on the fact

whether its value adds any new information to the value computed when the

node was processed the last time. Since this value is our TaintInfo informa-

tion, to avoid an in�nite loop it is only necessary to properly de�ne equality for

TaintInfo.

The implicit equality which compares the actual TaintInfo instances is obvi-

ously improper, for there is a new instance of TaintInfo created anytime merging

takes place. A better option is to compare equality of all the TaintInfo �elds.

However, this solution is also insu�cient. Consider this piece of PHP code:

$a = $_POST['a'];

while(true){

$a=$a.$a;

5

}

Inside of the cycle the information about previous �ow represented by pairs

of TaintInfo and VariableIdentifier will never stabilize, since the �ow will

be always extended by the same program point and will always be longer than

the previous one.

The solution to this problem is quite simple�the de�ned equality should

require all the TaintInfo �elds to be equal except for the list of possible taint

�ows. The equality condition for this list should be weaker�it is only necessary

that the taint information is collected from the same set of program points. When

there is an in�nite loop in taint propagation, only program points which were

already present in previous iteration are added to the taint �ow from the previous

iteration. The set of program points in the taint �ow is thus equal to previous

iteration and the computation stabilizes.

1.2 Weverca Analyzer Adjustments

Weverca analyzer is not only a library, it also contains a console application

project which can be executed with parameters de�ning whether to run static

analysis or compute metric information. For our purposes we added an addition-

al parameter option -cmide used for IDE integration. This parameter requires

another parameters to determine the action, �le or �les to analyze and optionally

other parameters depending on the action type.

There are three basic actions: getting the metric information, running static

analysis and getting the construct occurrences. The last action can be done in two

possible ways - either a PHP �le to get the occurrences from or a �le containing

all the �le paths to get the occurrences from is provided. All the information

provided by -cmide option is returned in the form that is adjusted for parsing

by plugins.

1.3 Eclipse Plug-ins

The main part of our project was integration of PHP code analysis into Eclipse

IDE. First of all this involves implementation of the analysis launch. This is

either scheduled to be done automatically or by direct or indirect user requests.

An indirect analysis request is for example selecting a �le in a �le explorer. After

the analysis is done, the output has to be parsed into a data structure that can be

processed and displayed to the user in various forms, usually as a clickable view

6

or code highlight. In case of a large analysis, this parsing is quite time consuming

and the resulting structure may take up a lot of space.

1.3.1 Requirements

The project does not provide an Eclipse perspective, its implementation requires

use of PHP perspective provided by PHP Development Tools (PDT). Addition-

ally, most of the functionality is also available for the basic Resource perspective.

The PDT plug-in is necessary for analyzing the �les selected in PHP explorer

which is a view de�ned by this plug-in and it is also needed to only provide

possibility of static analysis when PHP editor is opened.

1.3.2 Architecture

This part of our project is composed of seven individual plug-ins. In general

they can work independently, however there are two exceptions. First, all the

plug-ins depend on the Common plug-in. Second, both StaticAnalysisWarnings

and StaticAnalysisVariables need StaticAnalysis plug-in to be launched.

Yet the dependency is the other way around, for the StaticAnalysis plug-in

requires StaticAnalysisWarnings and StaticAnalysisVariables plug-ins to

execute them. The dependencies can be seen in �gure 1.1.

Figure 1.1: Dependencies between plug-ins. The arrows point from a plug-in to
its dependencies.

7

1.3.3 Plug-in Common

This plug-in contains classes and methods that are used in multiple plug-ins and

also some images used as icons. The most important functionality it provides is a

connection to Weverca analyzer, implemented in the class Runner. The connec-

tion is realized using ProcessBuilder which creates operating system processes

and allows reading the analyzer's standard output as an input stream. Any time

a connection of a plug-in to analyzer is presented in this text, it implicitly means

connection using the Runner.

The only contribution of this plug-in to the Eclipse workbench is a preference

page that allows to de�ne a path to Weverca analyzer. Some of the other func-

tionality of this plug-in is for instance getting the �le paths of �les selected in a

speci�c �le explorer, providing icons or putting focus on a speci�ed position in

an editor.

Figure 1.2: Connection to Weverca analyzer

1.3.4 Plug-in Metrics

The Metrics plug-in provides two view parts, ViewAggregated and ViewSimple,

which are able to work both independently and dependently. If only one of them

is open, it uses an implementation of ISelectionListener to listen for selection

changes in �le explorer�either PHP Explorer or Project Explorer. After the

selection change a MetricsParser is created which calls Runner with selected

�les and directories as Weverca analyzer parameters, and parses the information.

If both view parts are open simultaneously, only the ViewAggregated creates a

MetricsParser and provides the ViewSimple with all necessary information.

Figure 1.3: Metric information �ow

The MetricsParser parses the metric information from analyzer into two

8

di�erent metric information representations. The �rst one, MetricInformation,

stores metric information of a single �le or directory. The second representation,

AggregatedMetricInformation, stores a recursively merged metric information

of all the �les that were selected. This information is then requested by the view

parts and displayed in tables located inside of them.

1.3.5 Plug-in ConstructSearch

This plug-in contributes to a search page extension. The search page allows

de�ning which constructs to search for, either in �les that comes from the �le

explorer selection or in �les from the whole workspace. The search page uses

a ConstructParser class to get the construct occurrences from analyzer and

parse them. When the result is available, it opens a search result view which

shows the construct occurrences in a form of TreeViewer, that is provided by

JFace. The TreeViewer hierarchy can be seen in �gure 1.4. The TreeFile

and TreeFolder objects represent the �le structure and each TreeConstruct

represents an occurrence of a construct. The occurrences are also highlighted in

the editors. The highlight implementation uses Eclipse's Annotations managed

by IAnnotationModel.

Figure 1.4: Hierarchy of the TreeViewer in the search result view. Green objects
represent an object that can possibly be the root of the tree. The 'n' represents
the number of possible descendants of the speci�c type, which is a non-negative
integer.

1.3.6 Plug-in PHP_warnings

The PHP_warnings plug-in marks the construct occurrences using the same tools

as the ConstructSearch plug-in. It contributes to the preference page extension,

allowing developer to choose the constructs that will raise a warning. The way

this plug-in works is that it monitors editor changes and has an action scheduled

9

to be executed every second using a ScheduledExecutorService. This action

checks whether there were any changes made in an editor and if yes, the analyzer

is called and the highlight is updated according to the new construct occurrences.

This plug-in has to deal with a problem of dirty editors, because there is a need

to analyze a �le that is not saved. As a solution a temporary �le with editor

content is created and analyzed.

1.3.7 Plug-in StaticAnalysis

When the static analysis is called, either from project menu or from �le explor-

er pop-up menu, this plug-in calls analyzer and pushes the result to Static-

AnalysisWarnings and StaticAnalysisVariables plug-ins to process it.

Figure 1.5: Static analysis execution

1.3.8 Plug-in StaticAnalysisWarnings

This plug-in is only executed when called from StaticAnalysis plug-in and its

input is the static analysis result extended by taint analysis result from Weverca

analyzer. This input is parsed into individual warnings using a WarningsParser.

A warning can potentially contain one or more call stacks and, in case of a

security warning, it also contains one or more taint �ows. Each warning has a

priority indicator that is high only if it is a security warning with all possible

�ows tainted. All this information is visualized as a TreeViewer inside of a

WarningsView and the warnings are highlighted in the editors. The hierarchy of

the TreeViewer can be seen in �gure 1.6. Warning type represents a warning,

which can optionally contain call stacks represented by Call and taint �ows

represented by FlowString.

10

Figure 1.6: Hierarchy of the TreeViewer in the WarningsView. Green objects
represent an object that can possibly be the root of the tree. The 'n' represents
the fact that the number of possible descendants is a non-negative integer

The TreeViewer has a listener (an implementation of IDoubleClickListener)

registered, which listens for double click events. When a taint �ow is double

clicked, this listener opens it in another view, called TaintFlowView. The taint

�ow is also showed in the form of TreeViewer, with hierarchy demonstrated in

�gure 1.7. If the �ow does not represent merged �ows, it only comprises of one

layer, in case of merged �ows, this hierarchy may be split into multiple layers.

The �rst layer represents the common beginning of the �ows with their source,

the second layer represents their middles that are di�erent and the third layer

represents the common ending of the �ows with their sink. Any of these lay-

ers may be omitted, since, for example, the merged �ows do not have to have

a common source. Each layer comprises of a list of objects of FlowPoint and

Resource type. Additionally, if multiple layers are present, there are two spe-

cial types of FlowPoint�FirstFlowPoint and SplitPoint that serve for a tree

representation.

11

Figure 1.7: Hierarchy of the TreeViewer in the TaintFlowView. Green objects
represent an object that can possibly be the root of the tree. The 'n' or numbers
represent the number of possible descendants of the speci�c type ('n' stands for
a non-negative integer). Dotted lines represent the fact, that objects in the same
level of the hierarchy form a list structure.

1.3.9 Plug-in StaticAnalysisVariables

This plug-in is executed after the StaticAnalysisWarnings and handles the

same input information. The analyzer provides representation of MemoryLevel

input and output set for each line, containing information about all the variables.

These representations are parsed by VariablesParser into a structure which is

then presented to the developer. Besides presenting the content information of

variables, this plug-in is also responsible for dealing with dead code. If dead code

is detected, a DeadCodeView is opened with a TreeViewer with simple hierarchy

of unreachable program points and optionally their call stacks.

The content of variables is displayed in a view called VariablesView. Once

again, this view contains a TreeViewer that shows information about input or

output set of one line in the code. The structure of this TreeViewer, which

can be seen in �gure 1.8, is much more complex than the previous ones, for

it has to systematically present a lot of information. ProgramPoint represents

information about one line of a code. Context represents a context�a line of code

can have multiple contexts if it is, for example, a part of a function body. In this

case, di�erent function calls can lead to di�erent information. Therefore Context

can optionally contain a Call which represents the call stack. It also contains

a VariableType which depicts three types of variables - local variables, global

variables and aliases. The �rst two types contain a list of Variable objects and

the alias type contains a list of Alias objects. An Alias may possess a must and

may AliasType which represent the aliases that must be true and the ones that

may be true. Each AliasType contains a list of aliased variables. Variable holds

three di�erent kinds of information. The �rst, represented by Value contains the

12

variable type and value, the second is a taint information represented by Taint

and its children TaintValue. The last information that Variable may hold is a

list of its �elds as Variable objects. This information is only available in case of

an array or an object.

Figure 1.8: Hierarchy of the TreeViewer in the VariablesView. Green objects
represent an object that can possibly be the root of the tree. The 'n' or the
numbers beside lines represent the number of possible descendants of the speci�c
type ('n' stands for a non-negative integer).

13

	Implementation
	Taint Analysis
	Taint Flow Representation
	Taint Analyzer
	Avoiding Infinite Loops

	Weverca Analyzer Adjustments
	Eclipse Plug-ins
	Requirements
	Architecture
	Plug-in Common
	Plug-in Metrics
	Plug-in ConstructSearch
	Plug-in PHP_warnings
	Plug-in StaticAnalysis
	Plug-in StaticAnalysisWarnings
	Plug-in StaticAnalysisVariables

