
Contents

1 User Documentation 2

1.1 Requirements . 2

1.2 Installation . 3

1.3 Preferences . 3

1.4 Usage . 5

1.4.1 Code Metrics . 5

1.4.2 Constructs . 7

1.4.3 Static Analysis . 9

1

1. User Documentation

In this chapter we present a set of plug-ins for Eclipse IDE that provide PHP code

analysis. The plug-ins use external project called Weverca to analyze the PHP

code both syntactically and statically. As a result, our plug-ins are capable of

displaying code metrics, �nding speci�c language construct, detecting unreach-

able code, showing the set of potential variable values, pointing out the code

�aws or visualizing potentially dangerous �ows from user input into database or

other dangerous sinks. This information is not only useful for source code quality

maintenance but also for developing secure web applications.

It is not easy to create a secure application and is even impossible to manually

detect all the security vulnerabilities. Hence it is useful to use automated tool

that makes this less time consuming and more reliable. Our plug-ins are able to

detect some security �aws in the code and help to detect many others. In both

cases it is necessary to review the analysis results manually, however the plug-ins

provide a nice and simple output that can be reviewed easily and quickly.

This chapter describes the functionality of our plug-ins and describes the

output of the analyses.

1.1 Requirements

The following list contains the required software:

• Weverca analyzer

• .NET 4.5 or later/Mono 3 or later

• Eclipse version 4.1 or later

• JRE 1.7 (Java 7) or later

• partially required Eclipse PDT (PHP Development Tools) plug-in

The plug-ins were developed and tested using the following con�guration:

Operating system: Windows 7 and Windows 8.1
Eclipse: version 4.3.2

Java: version 7
PDT: version 3.0.1

2

1.2 Installation

The attached CD contains an Installation folder with a feature project called

PHP.analysis.plugin. In Eclipse, feature projects are easily installed using the

Install page. This can be found in the main toolbar Help -> Install New

Software.... This page requires a site to work with, which is added by click-

ing the Add button. Here, the Installation folder should be added as a Local

site. Eclipse will search for a feature project in this location and after selecting

the project to install, the installation manager will guide the user through the

installation process.

1.3 Preferences

The most important setting is increasing the size of available memory for Eclipse.

This can be done in Eclipse.ini �le by setting the -Xmx and -XX:MaxPermSize

arguments. The necessary size depends on the size of analyzed projects�1024m

should be su�cient, however it is necessary to enlarge it, if analysis is not working

properly.

Another preference is the path to Weverca analyzer. The default location is

the same directory as the plug-ins are located in, however this can be changed

in a preference page in the main toolbar Window -> Preferences -> Weverca

Analyzer. If the path is not correct, the plug-ins raise a warning. The preference

page also provides a possibility of hiding this warning.

Figure 1.1: Preference page for de�ning the path to Weverca analyzer

The user has a possibility to de�ne which constructs should report an on-the-

�y warning. This can be done in a preference page that can be found in the

3

main toolbar: Window -> Preferences -> PHP Warnings. The preference page

provides an option to select from 13 di�erent constructs.

Figure 1.2: Preference page for de�ning the constructs to raise a warning

Besides that, the user can also de�ne how to highlight the individual construct

search results (SQL, Class, Sessions, Autoload, Magic methods, Aliasing, Inside

function declaration, Super global variable, Dynamic call, Dynamic dereference,

Dynamic include, Eval, Passing by reference at call site) and PHP construct warn-

ings (PHP Construct Warning). The developer can decide whether to highlight or

only show a squiggly line, set the highlight color and choose whether to show this

annotation in a vertical and overview ruler. This can be all de�ned in Window ->

Preferences -> General -> Editors -> Text Editors -> Annotations.

Figure 1.3: Preference page for annotations

4

1.4 Usage

After the plug-ins are installed, they are ready to be used. First of all it may be

necessary to de�ne the correct path to the Weverca analyzer. This can be done

in a preference page as described in section 1.3. The plug-ins cover three main

areas - metrics computation, potentially dangerous constructs visualization and

static analysis. All three areas are covered in the following subsections. The �rst

two are executed quite fast (naturally the actual time depends on the amount of

analyzed code) static analysis may take a notably longer time, however it provides

a lot of useful information. Most of the computations, especially those that may

take a long time, are done in the background.

1.4.1 Code Metrics

There are two available views for displaying the metric information�PHP met-

rics and PHP aggregated metrics. To get the metric information it is necessary

that at least one of the metrics views is open. To �nd these views and all the

other views provided by our plug-ins go to Window -> Show View -> Other...

-> PHP Analysis. Besides these views, a Project Explorer view (Resource per-

spective) or PHP Explorer view (PHP perspective) must be open too. In order

to compute the metrics, the user have to select one or more �les or folders in one

of these �le explorers. An important note is that it is better to select the whole

directory than selecting all the �les individually, for the metric information is

computed faster. The reason is that the �les selected individually are analyzed

separately. After the �les are selected, the computation starts and computed

results are displayed in the metrics views.

Figure 1.4: Location of the views

5

The analysis result contains following metrics:

• Number of lines and Number of sources

These metrics provide a simple statistical information.

• Maximum inheritance depth

This metric represents the longest chain of class inheritance.

• Maximal depth of method overriding

The metric shows the number of implementations of the most frequently

overridden method.

• Class coupling

Class coupling represents an average number of user-de�ned classes that a

single class uses. It is recommended to try to lower this number down, for

highly coupled code contains a lot of dependencies and therefore is harder

to reuse and maintain.

• PHP functions coupling

This metric depicts an average number of user-de�ned functions that a

single class calls. Once again a higher number equals worse application

design.

The PHP aggregated metrics view combines the metric information of all

selected �les and folders recursively. Combining means adding the numbers in

case of Number of lines and Number of sources metric or choosing the maximum

value otherwise.

Figure 1.5: PHP aggregated metrics view example

The PHP metrics view shows the metric information of each �le individually.

The metrics are shown in columns, which can be optionally hidden by right-

clicking the table and deselecting the column. This view provides a possibility

6

to choose whether to only show �les or folders, or both of them. The user can

also switch between analyzing the folders recursively and non-recursively. Both of

these options can be found in a toolbar located in the view's upper right corner.

It is also possible to sort the table rows according to a speci�c metric by clicking

the column description.

Figure 1.6: PHP metrics view example

1.4.2 Constructs

The plug-ins provide a possibility to detect some special PHP elements, special

constructs, variables or functions. These constructs are usually potentially dan-

gerous or prevent the analyzer from completely analyzing the whole source code.

The following constructs can be detected:

• SQL

This indicates whether there is any MySQL function in the code. A com-

plete list of these functions can be found in the PHP documentation [?].

• Sessions

This construct comprises of session functions which allow preserving data

across subsequent accesses.

• Autoload

Autoload means use of function __autoload or spl_autoload_register.

These functions allow to load a type that has not been declared yet.

• Magic methods

This construct involves special methods that are usually called in a language

construct. If a magic method is not declared, either an error is reported or

a default operation is performed.

• Class presence

Class presence checks for the class declarations in the source code.

7

• Aliasing

This construct indicates an alias presence.

• Inside function declaration

This involves function and types declared inside a subroutine. Locally de-

clared function or type becomes global after the �rst declaration, however it

cannot be declared multiple times. Developer should avoid inside function

declarations.

• Use of super global variable

Super global variables represent an application input, for example $_GET

and $_POST variables. These arrays contain unpredictable content and

should be always validated and sanitized.

• Dynamic dereference

Dynamic dereference is potentially dangerous construct that allows usage

of variable as a reference to another variable. Consider variable $a = "b",

then the construct $$a is equivalent to $b. It is recommended not to use

dynamic dereference, for the resulting variable might be inde�nite.

• Dynamic call

Dynamic call is similar to the dynamic dereference, only the dereferenced

value is used as a name of method or class. This construct is even more

dangerous that dynamic dereference and developer should avoid it.

• Dynamic include

This construct allows to include a �le (with additional source code) whose

name is generated in run-time.

• Eval

Eval is a very dangerous PHP construct, since it allows execution of arbi-

trary PHP code stored as a string value.

• Passing by reference at call site

This means passing a references parameter to a function, so that the func-

tion is able to write to the original variable.

The constructs can be detected in two ways. The �rst way is to de�ne the

constructs that will be marked as warnings and displayed as the user is typing.

De�ning the set of constructs to be marked on-the-�y is described in section 1.3.

8

Figure 1.7: Class presence warning

The second way is to search for the construct occurrences manually. A search

page was created for this purpose that can be found in the main toolbar: Search

-> Search -> PHP Construct Search. The user can select which constructs to

search for and whether to search in selected �les (only PHP Explorer and Project

Explorer selections are available) or in the whole workspace. If a folder is selected,

it is searched recursively. After the search is processed, a PHP Search Result view

is opened with the results. These results are clickable so that the developer is able

to easily navigate to the desired construct occurrence. All the occurrences are

also highlighted in the editors and the highlight colors can be de�ned as showed

in section 1.3.

Figure 1.8: Class presence search result

1.4.3 Static Analysis

Static analysis provides deeper information about the code. The analysis can be

launched in two possible ways. First, by a menu button that can be found in the

main toolbar Project -> Static Analysis. This option is only available when

PHP editor is open, since it analyzes the open editor and other included �les.

Another option is to select the �les to be analyzed in PHP Explorer or Project

Explorer and right-click the selection. A pop-up window will show up containing

a Static Analysis menu button.

9

Figure 1.9: Executing static analysis

When the analysis launches, a Static Analysis Overview view opens up. It

allows to check whether the analysis is still running and also contains a button

dedicated to terminating the analysis. This is particularly helpful in case the

analysis is running for abnormally long time. After the analysis is done, this

view displays the overall analysis information such as analysis time or number of

processed program points.

As a result of the analysis, two or three new views shows up. These views

contain warnings, information about unreachable code and also provide an option

to display the superset of possible values for each variable. All this information is

context-sensitive which means that in case of extensions (e.g., bodies of functions

that extends program points representing function calls), the information might

be split into multiple parts. Each part corresponds to a speci�c context (e.g.,

place from which the function is called or more precisely call stack) and hence

may contain di�erent information. However, not every singe call has its own

context, the contexts may be shared among multiple extensions. In any case, if a

context-sensitive information is shown, there is a call stack provided representing

the sequence, or possible sequences, of calls leading to the information.

Unreachable Code View

Unreachable Code view is only opened if there is any unreachable code in the

analyzed �les. This view shows each unreachable line in the analyzed �les. If

the line is a part of a code extension, a call stack that led to unreachable code

is displayed too. Both unreachable lines and call stacks are clickable and allow

a quick focus on the speci�ed line. Additionally, in the view's top right corner

there is a button dedicated to highlighting all the unreachable code.

10

Variable View

Another view that is automatically opened is a Variables view. This view only

shows content when a caret is located in a line from analyzed source code. The

view displays possible variable types and contents for each variable just before or

after the line is processed. To set whether to show the information before or after

line processing there is a toggle button located in the view's toolbar in the top

right corner. If the line is a part of extension and there exist multiple contexts

for the line, it shows the variable information for all of them, with clickable call

stacks included.

Figure 1.10: Example of a Variables view

The actual information is divided into three parts:

1. Global variables that exist in the entire scope of the source code. For

example _GET array.

2. Local variables which are only accessible in a speci�c context.

3. Aliases, which contain information about variable references.

Each part contains all the variables of given type from the current context.

A variable contains a value and, in case it is tainted, also a list of taint �ags. A

11

value can be concrete (for example �True' Type: Boolean') or it can be an

interval of numbers, or an abstract value representing any value of a type (for

example 'AnyIntegerValue'. The only possible taint �ags are HTML dirty, SQL

dirty and File path dirty.

Warnings View

The last view with static analysis results is Warnings view, which contains all

the warnings that were raised during the static analysis. All the warnings are

clickable, so that it is possible to navigate to the code that caused the warning.

In case of an extension, a call stack that led to a warning is showed too.

Figure 1.11: Example of a Warnings view

There are two types of warnings�general warnings and security warnings. A

general warning is for example 'Wrong number of arguments'. Security warn-

ings are related to the �ows of tainted values, for example 'Unchecked value

goes into browser'. These warnings usually contain one or more possible taint

�ows that caused the warning. They shows �ows of non-sanitized user input into

a sink, e.g., a database or a browser.

There is a button in the view that provides four options to display the taint

�ows:

1. Separated and showed from the source to the sink.

2. Separated and showed from the sink to the source.

3. Merged by their source (showed from the source to the sink).

4. Merged by their sink (showed from the sink to the source).

In some cases it is possible that a displayed taint �ow is unfeasible. Consider

the following PHP code:

12

<?php

$x = $_POST;

$a = 'a';

$b = $x;

if ($x) { $a = &$b; }

$b = 'str';

echo $a;

?>

The static analysis raises a warning for the last line, stating that unchecked

value goes into browser. However, this warnings is unfeasible, for the �ow would

be sanitized by assigning $b = 'str';. Therefore it is necessary to always review

the taint �ows manually.

We made the review easier by making the taint �ows inWarning view clickable.

There is a new view called Taint Flow opened when a �ow is double-clicked.

Simultaneously, the �ow is highlighted. To avoid confusion the highlight is only

shown when the Taint Flow view is active. The Taint Flow view contains a

list of the �ow lines with a preview. In this preview, variables that carry the

tainted information are red-coloured. Again, for easier navigation, these lines are

clickable.

Figure 1.12: Example of a Taint Flow view

Warning

Even though the static analysis runs in the background so that it is

possible to modify the �les that are being analyzed, it is strongly rec-

ommended not to do so. If an analyzed �le is modi�ed during or after

the analysis, the results might not be correct (for example the lines

might be shifted, the taint �ows might show absurd and false informa-

tion etc.).

13

	User Documentation
	Requirements
	Installation
	Preferences
	Usage
	Code Metrics
	Constructs
	Static Analysis

