
Software project using .NET
n-gram search engine

The goal of this project is to produce a search engine that
allows indexing and searching textual web content based
on short sequences of Unicode characters, where short
means at least 4 characters from the Basic Multilingual
Plane.

Motivation: Changing the way text should be encoded is potentially
disruptive to existing corpus of text and users. This can happen in several
ways, such as encoding new characters disunifying existing ones,
deprecating existing characters, or discouraging certain sequences of
characters. Yet, in some cases, such changes could bring significant
improvements to the users, which need to be considered against risks of
fracturing existing data and introducing security concerns.

Unfortunately, there is currently no way to assess how prevalent a given
sequence of characters is on the web. Generic search engines preprocess
text considerably, including normalizing it, ignoring case, white space,
control characters, private use characters or even punctuation, and they
do not index arbitrary strings in the middle of words.

This project aims to provide a tool to answer the question how many
instances of given sequence of characters exist on the web? The index
should keep track of a few example URLs containing the sequence but
does not need to return them all if not practical and does not need to rank
them.

Team size: 3–4 students

Platform: .NET, any supported language of choice

Contact: Jan Kučera (kucera@unicode.org)

mailto:kucera@unicode.org

Example workload split:

Topic 1: Web crawling and processing input data
An existing web crawler is expected to be utilized or adapted to
access raw web data before processing. Plain text needs to be
extracted from the data using correct encoding and avoiding
any encoding-changing processing. This should be extensible
based on the content type. For example, HTML and XML data
should resolve character entities, JSON strings should be
unescaped, etc. All the found n-grams need to be
communicated to the storage.
Possible extensions: support for more content types (PDF,
ZIP, DOCX, etc.); distributed crawling.

Topic 2: Database/index design and storage
An appropriate storage system for the data needs to be
designed, balancing space requirements and retrieval speed,
while maximizing n. For example, small values of n could allow
creating an index with constant lookup time. The index needs
to provide the number of occurrences together with a few
reference URLs per n-gram. However, a considerable number
of URLs would likely need to be stored to ensure each
contributes only once to the total number of occurrences.
Possible extensions: Store dates of crawl with the occurrence
numbers, so that historical development over time can be
reported; support characters not encoded yet.

Topic 3: Web API and UI
A web user interface and API to access and present the
indexed data and statistics should be designed and
documented. The interface should allow characters to be
entered either directly or escaped and it should make clear
which characters are entered, including control ones.
Possible extensions: Entering characters by their name; font
selection; charts if history data is present.

