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OverviewOverview
● support for multi-threaded applications in the 

language
● “main” thread of an application – the main() method
● in JVM there are always a number of threads

– depends on the implementation
● JVM terminates after termination of all threads (which 

are not daemon threads)
● threads and thread groups
● support for synchronization

– synchronized
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Thread creationThread creation
● thread implementation

1.extending the class java.lang.Thread
2.implementing the interface java.lang.Runnable

● extending the Thread
– redefining the method void run()
– the thread is started by the method start()

● interface Runnable
– the only method void run()
– implemented by a class
– the thread start – new Thread(Runnable).start()
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ExampleExample
public class SimpleThread extends Thread {
  public SimpleThread() {
    start();
  }
  public void run() {
    for (int i=0; i<5; i++) 
      System.out.println(getName() + " : "+i);
  }
  public static void main(String[] args) {
    for (int i=0; i<5; i++) {
      new SimpleThread();
    }
  }
}
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yieldyield
●  method of the class Thread

– temporarily suspending the thread in order another 
thread can run

– it is only a recommendation
● static method
● update of the previous example

public void run() {
  for (int i=0; i<5; i++) {
    System.out.println(getName() + " : "+i);
    yield();
  }
}



Java, winter semester 2019
26. 11. 2019 6

sleepsleep
● two methods of the Thread

– sleep(int milis)
– sleep(int milis, int nanos)

● nanos within range  0-999999
● static method
● causes the currently executing thread to sleep for the 

given time
● can be interrupted (by the method interrupt())

– throws the exception InterruptedException
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interruptinterrupt
● interrupts “waiting” of a thread

Thread1 Thread2

sleep()

interrupt()
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joinjoin
● three methods of the class Thread

– join()
● waits for the given thread to terminates

– join(int milis)
– join(int milis, int nanos)

● waits for the given thread to terminates but at most the 
given time (0..as join() without parameters)

● can be interrupted
–  exception InterruptedException

Thread1 Thread2

join()

thread finishedjoin() finished



Java, winter semester 2019
26. 11. 2019 9

PriorityPriority
● each thread has the priority
● void setPriority(int newPriority)
● int getPriority()
● 10 levels 
● constants

– MAX_PRIORITY = 10
– MIN_PRIORITY = 1
– NORM_PRIORITY = 5

● groups of threads (ThreadGroup)
– getMaxPriority()
– setPriority() 

● it sets the priority only up to the max priority for the 
group to which the thread belongs
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Daemon threadsDaemon threads
● "management" threads
● runs "in background"
● they do not directly belong to an application

– e.g. the thread for garbage collector
● JVM terminates after termination of all non-daemon 

threads
● methods

– void setDaemon(boolean daemon)
● can be called on not-yet-started thread only

– boolean isDaemon()
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SynchronizationSynchronization
● there is a lock associated with each instance
● there is a lock associated with each class

● command/modifier synchronized

● command
– synchronized (expression) Block

– expression must evaluate to a reference
– before the  Block is to be executed, the thread must 

obtain the lock on the instance specified by the 
expression

– after the Block is finished, the lock is released
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SynchronizationSynchronization
● modifier of a method

– synchronized in the signature of the method
– behaves in the same manner like the command 

synchronized
– the thread also before execution of the method must 

obtain the lock on the instance
– after the method is finished, the lock is released
– static synchronized methods manipulates the lock 

associated with the class
● mutually excluded are only synchronized methods 

and blocks
● if a thread has obtained the lock on an instance – 

other threads can use fields of the instance and call 
non-synchronized methods of the instance
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wait & notifywait & notify
● there is a queue of waiting threads associated with 

each instance
– it is empty after creating the instance

● it is used by the methods  wait, notify and 
notifyAll
– defined in java.lang.Object

● void wait()
– can be called only when the calling thread has 

obtained the lock on the given instance (i.e. in a 
synchronized section)

● or throws the exception IllegalMonitorStateException
– puts the thread to the queue of waiting threads, and
– releases the lock on the instance

● other threads can obtain the lock, i.e. enter 
synchronized sections
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wait & notifywait & notify
● the thread is in the queue of waiting threads until the  
notify or notifyAll method is called

● void notify()
– "wakes up" a thread from the queue (if the queue is 

not empty)
– can be called only from synchronized sections

● jinak výjimka IllegalMonitorStateException
– the waked up thread continues after it obtains the lock 

(i.e. after the tread, which held the lock (and called 
notify) leaves the synchronized section)

● void notifyAll()
– "wakes up" all threads from the queue
– the threads can continue after they obtain the lock
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wait & notifywait & notify
● three wait methods

– void wait()
– void wait(int milis)
– void wait(int milis, int nanos)

● threads stay in the queue till waked up or the given time 
has elapsed

● waiting in the wait() can interrupted (the method 
interrupt())
– the exception InterruptedException is thrown

● wait, notify, and notifyAll are final

● the method sleep() does not releases the lock



Java, winter semester 2019
26. 11. 2019 16

Simple lock via synchronizedSimple lock via synchronized
public class SimpleLock {

  private boolean locked;

  public SimpleLock() {
    locked = false;
  }

  synchronized public boolean lock() {
    try {
      while (locked) 
        wait();
      locked = true;
    } catch (InterruptedException e) {
      return false;
    }
    return true;
  }

  synchronized public void unlock() {
    locked = false;
    notify();
  }
}
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Stopping threadStopping thread
● destroy()
● stop()
● stop(Throwable t)
● suspend()
● resume()

– all of them deprecated (most since JDK 1.2)
– dangerous
– can cause an inconsistent state of an application or 

cause a deadlock

● destroy() and stop(Throwable)
– removed since Java 11
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Thread groupsThread groups
● a thread can belong to a group of threads
● the ThreadGroup class
● a group can contain threads and other groups

– tree hierarchy
● can be obtained

– all threads in the group
– parent group in the hierarchy
– active threads in the group

● can be ignored
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Thread nameThread name
● each thread has a name

– can be specified during creation
● constructors

– Thread(String name)
– Thread(Runnable obj, String name)

– after creation
● setName(String name)

– obtaining the name
● String getName()

● if the name is not set, then it is assigned 
automatically
– "Thread-"+n

● n is sequence number
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Other methodsOther methods
● static Thread currentThread()

– returns a reference to the currently executing thread
● boolean isAlive()

– test if this thread is alive
● false in case the thread is not yet started or already 

finished
● boolean isInterrupted()

– test whether this tread has the flag interrupted assigned
● boolean interrupted()

– as isInterrupted(), but clears the flag interrupted
● String toString()

– the string contains
● name
● priority
● group
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java.util.concurrentjava.util.concurrent
● java.util.concurrent
● java.util.concurrent.atomic
● java.util.concurrent.locks

– since JDK 5
– contain classes for concurrent access to data, locks, 

semaphores,...
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java.util.concurrentjava.util.concurrent
● Executor

– interface
– multiple implementations

● ThreadPoolExecutor, ForkJoinPool,...
– void execute(Runnable command)

● executes the “command” at some time in future
● ExecutorService

– interface, extends Executor
– additional methods

● Future<T> submit(Callable<T> task)
● List<Future<T>> invokeAll(Collection<? extends 

Callable<T>> tasks)
● ...
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java.util.concurrentjava.util.concurrent
● Callable<T>

– interface
– T call() throws Exception
– equivalent to Runnable, but returns a value and can 

throw an exception

● Future<T>
– interface
– a result of an asynchronous operation
– T get()

● returns the result
● waits if the result is not yet available
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ForkJoinPoolForkJoinPool
● od Java 7
● implements ExecutorService
● intended for “divide and conquer”
● supports “work-stealing”

● ForkJoinTask<V>
– a task for ForkJoinPool, an abstract class
– children

● RecursiveAction
– abstract void compute()

● RecursiveTask<V>
– abstract V compute()
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ForkJoinPoolForkJoinPool
● methods for executing tasks

– execute()
● asynchronous execution

– submit(), submitAll()
● asynchronous execution + returns a Future

– invoke(), invokeAll()
● execution and waiting for a result

● similar methods are also in ForkJoinTask
– execution of “subtasks”

● obtaining the pool
– constructors, or
– ForkJoinPool.commonPool()



Java, winter semester 2019
26. 11. 2019 26

ForkJoinPoolForkJoinPool
class CustomRecursiveAction extends RecursiveAction {

  @Override
  protected void compute() {
    if (...) {
      ForkJoinTask.invokeAll(createSubtasks());
    }
  }

  public static void main() {
    CustomRecursiveAction cra = 

new CustomRecursiveAction()
    ForkJoinPool.commonPool().invoke(cra);
  }
}
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ExecutorsExecutors
● a class
● only static utility methods

– converting Runnable into Callable
– obtaining different thread-pools

● newFixedThreadPool()
● newSingleThreadPool()
● …

– ...
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JAVAJAVA

java.lang.System
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java.lang.Systemjava.lang.System
● contains static elements only
● no instance can be created

● fields
– java.io.InputStream in

● standard input
– java.io.PrintStream out

● standard output
– java.io.PrintStream err

● standard error output
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MetodsMetods
● void arraycopy(Object src, int srcPos, 
Object dest, int destPos, int length)
– copies arrays
– works even if src==dest

● long currentTimeMillis()
– current time in milliseconds since 1.1.1970
– precision depends on OS

● long nanoTime()
– value of a system timer in nanoseconds
– nanoseconds since some fixed but arbitrary time

● can even in future, i.e. the returned value can negative
– used for measurements of time intervals
– since Java 5
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MetodsMetods
● void exit(int status)

– terminates JVM
● void gc()

– recommendation for JVM to run garbage collector
● void setIn(InputStream s)
void setOut(PrintStream s)
void setErr(PrintStream s)
– sets the particular input/output

● int identityHashCode(Object x)
– returns default hash code of the object
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PropertiesProperties
● tuples

– key – value
– String (both keys and values)

● system and user-defined
● Properties getProperties()

– returns all set properties
– java.util.Properties – extends java.util.Hashtable

● String getProperty(String key)
– returns the value
– if the key is not set, returns null

● String getProperty(String key, String 
def)
– returns the value
– if the key is not set, returns def
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PropertiesProperties
● void setProperties(Properties props)

– sets properties in props
● String setProperty(String key, String 
val)
– sets the given property property
– returns its previous value or null

● String clearProperty(String key)
– clears the given property

● setting properties at JVM start
– parameter -Dkey=value
– ex. java -DdefaultDir=/usr Program

● typically, hierarchical names (separated by dots) are 
used as the keys



Java, winter semester 2019
26. 11. 2019 34

Always set propertiesAlways set properties
● java.version
● java.home

– directory where the Java is installed
● java.class.path
● java.io.tmpdir

– directory for temporary files
● os.name, os.architecture, os.version

– identification of an operating system
● file.separator

– the separator of names in a path (unix "/", win "\")
● path.separator

– the path separator (unix ":", win ";")
● line.separator

– the line separator (unix "LF", win "CR LF")
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Always set propertiesAlways set properties
● user.name

– name of the current user
● user.home

– user's home dir 
● user.dir

– current directory
● plus several properties that identifies VM
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Environment variablesEnvironment variables
● Map<String, String> getenv()

– all set environment variables
– unmodifiable collection

● String getenv(String name)
– variable with the given name



Java, winter semester 2019
26. 11. 2019 37

JAVAJAVA

java.lang.Runtime
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RuntimeRuntime
● there is always a single instance

– no other instances can be created
● Runtime getRuntime()

– static method
– returns the instance of the Runtime

● int availableProcessors()
– depends on the implementation
– returned value may change during a program execution

● long freeMemory()
– free memory available for JVM

● long maxMemory()
– maximal available memory for  JVM

● void halt(int status)
– immediately terminates JVM, does not wait for anything
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RuntimeRuntime
● void addShutdownHook(Thread hook)

– sets a thread to be run during JVM termination
– hook – created but not started thread
– there can be several set hooks

● they will start in some unspecified order
– daemon threads run even during JVM termination
– hooks are not executed if JVM was terminated using 

halt()

● boolean removeShutdownHook(Thread hook)
– removes the set hook
– return false if the given thread has not been set
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RuntimeRuntime
● Process exec(String command)

– launches an external process
– several variants (with different parameters)
– may not always work correctly

● the class Process
– represents an external process
– methods

● void destroy()
– kills the process

● int exitValue()
– return value of the process

● int waitFor()
– waits until the process terminates
– returns the return value
– can be interrupted
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JAVAJAVA

java.lang.Math
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java.lang.Mathjava.lang.Math
● static fields and methods for basic mathematic 

constants and operations

● fields
– PI, E

● methods
– abs, ceil, floor, round, min, max,...
– pow, sqrt,...
– sin, cos, tan, asin, acos, atan,...
– toDegrees, toRadians,...
– ...
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