
Java, winter semester 2019
26. 11. 2019 1

JAVAJAVA

Threads

Java, winter semester 2019
26. 11. 2019 2

OverviewOverview
● support for multi-threaded applications in the

language
● “main” thread of an application – the main() method
● in JVM there are always a number of threads

– depends on the implementation
● JVM terminates after termination of all threads (which

are not daemon threads)
● threads and thread groups
● support for synchronization

– synchronized

Java, winter semester 2019
26. 11. 2019 3

Thread creationThread creation
● thread implementation

1.extending the class java.lang.Thread
2.implementing the interface java.lang.Runnable

● extending the Thread
– redefining the method void run()
– the thread is started by the method start()

● interface Runnable
– the only method void run()
– implemented by a class
– the thread start – new Thread(Runnable).start()

Java, winter semester 2019
26. 11. 2019 4

ExampleExample
public class SimpleThread extends Thread {
 public SimpleThread() {
 start();
 }
 public void run() {
 for (int i=0; i<5; i++)
 System.out.println(getName() + " : "+i);
 }
 public static void main(String[] args) {
 for (int i=0; i<5; i++) {
 new SimpleThread();
 }
 }
}

Java, winter semester 2019
26. 11. 2019 5

yieldyield
● method of the class Thread

– temporarily suspending the thread in order another
thread can run

– it is only a recommendation
● static method
● update of the previous example

public void run() {
 for (int i=0; i<5; i++) {
 System.out.println(getName() + " : "+i);
 yield();
 }
}

Java, winter semester 2019
26. 11. 2019 6

sleepsleep
● two methods of the Thread

– sleep(int milis)
– sleep(int milis, int nanos)

● nanos within range 0-999999
● static method
● causes the currently executing thread to sleep for the

given time
● can be interrupted (by the method interrupt())

– throws the exception InterruptedException

Java, winter semester 2019
26. 11. 2019 7

interruptinterrupt
● interrupts “waiting” of a thread

Thread1 Thread2

sleep()

interrupt()

Java, winter semester 2019
26. 11. 2019 8

joinjoin
● three methods of the class Thread

– join()
● waits for the given thread to terminates

– join(int milis)
– join(int milis, int nanos)

● waits for the given thread to terminates but at most the
given time (0..as join() without parameters)

● can be interrupted
– exception InterruptedException

Thread1 Thread2

join()

thread finishedjoin() finished

Java, winter semester 2019
26. 11. 2019 9

PriorityPriority
● each thread has the priority
● void setPriority(int newPriority)
● int getPriority()
● 10 levels
● constants

– MAX_PRIORITY = 10
– MIN_PRIORITY = 1
– NORM_PRIORITY = 5

● groups of threads (ThreadGroup)
– getMaxPriority()
– setPriority()

● it sets the priority only up to the max priority for the
group to which the thread belongs

Java, winter semester 2019
26. 11. 2019 10

Daemon threadsDaemon threads
● "management" threads
● runs "in background"
● they do not directly belong to an application

– e.g. the thread for garbage collector
● JVM terminates after termination of all non-daemon

threads
● methods

– void setDaemon(boolean daemon)
● can be called on not-yet-started thread only

– boolean isDaemon()

Java, winter semester 2019
26. 11. 2019 11

SynchronizationSynchronization
● there is a lock associated with each instance
● there is a lock associated with each class

● command/modifier synchronized

● command
– synchronized (expression) Block

– expression must evaluate to a reference
– before the Block is to be executed, the thread must

obtain the lock on the instance specified by the
expression

– after the Block is finished, the lock is released

Java, winter semester 2019
26. 11. 2019 12

SynchronizationSynchronization
● modifier of a method

– synchronized in the signature of the method
– behaves in the same manner like the command

synchronized
– the thread also before execution of the method must

obtain the lock on the instance
– after the method is finished, the lock is released
– static synchronized methods manipulates the lock

associated with the class
● mutually excluded are only synchronized methods

and blocks
● if a thread has obtained the lock on an instance –

other threads can use fields of the instance and call
non-synchronized methods of the instance

Java, winter semester 2019
26. 11. 2019 13

wait & notifywait & notify
● there is a queue of waiting threads associated with

each instance
– it is empty after creating the instance

● it is used by the methods wait, notify and
notifyAll
– defined in java.lang.Object

● void wait()
– can be called only when the calling thread has

obtained the lock on the given instance (i.e. in a
synchronized section)

● or throws the exception IllegalMonitorStateException
– puts the thread to the queue of waiting threads, and
– releases the lock on the instance

● other threads can obtain the lock, i.e. enter
synchronized sections

Java, winter semester 2019
26. 11. 2019 14

wait & notifywait & notify
● the thread is in the queue of waiting threads until the
notify or notifyAll method is called

● void notify()
– "wakes up" a thread from the queue (if the queue is

not empty)
– can be called only from synchronized sections

● jinak výjimka IllegalMonitorStateException
– the waked up thread continues after it obtains the lock

(i.e. after the tread, which held the lock (and called
notify) leaves the synchronized section)

● void notifyAll()
– "wakes up" all threads from the queue
– the threads can continue after they obtain the lock

Java, winter semester 2019
26. 11. 2019 15

wait & notifywait & notify
● three wait methods

– void wait()
– void wait(int milis)
– void wait(int milis, int nanos)

● threads stay in the queue till waked up or the given time
has elapsed

● waiting in the wait() can interrupted (the method
interrupt())
– the exception InterruptedException is thrown

● wait, notify, and notifyAll are final

● the method sleep() does not releases the lock

Java, winter semester 2019
26. 11. 2019 16

Simple lock via synchronizedSimple lock via synchronized
public class SimpleLock {

 private boolean locked;

 public SimpleLock() {
 locked = false;
 }

 synchronized public boolean lock() {
 try {
 while (locked)
 wait();
 locked = true;
 } catch (InterruptedException e) {
 return false;
 }
 return true;
 }

 synchronized public void unlock() {
 locked = false;
 notify();
 }
}

Java, winter semester 2019
26. 11. 2019 17

Stopping threadStopping thread
● destroy()
● stop()
● stop(Throwable t)
● suspend()
● resume()

– all of them deprecated (most since JDK 1.2)
– dangerous
– can cause an inconsistent state of an application or

cause a deadlock

● destroy() and stop(Throwable)
– removed since Java 11

Java, winter semester 2019
26. 11. 2019 18

Thread groupsThread groups
● a thread can belong to a group of threads
● the ThreadGroup class
● a group can contain threads and other groups

– tree hierarchy
● can be obtained

– all threads in the group
– parent group in the hierarchy
– active threads in the group

● can be ignored

Java, winter semester 2019
26. 11. 2019 19

Thread nameThread name
● each thread has a name

– can be specified during creation
● constructors

– Thread(String name)
– Thread(Runnable obj, String name)

– after creation
● setName(String name)

– obtaining the name
● String getName()

● if the name is not set, then it is assigned
automatically
– "Thread-"+n

● n is sequence number

Java, winter semester 2019
26. 11. 2019 20

Other methodsOther methods
● static Thread currentThread()

– returns a reference to the currently executing thread
● boolean isAlive()

– test if this thread is alive
● false in case the thread is not yet started or already

finished
● boolean isInterrupted()

– test whether this tread has the flag interrupted assigned
● boolean interrupted()

– as isInterrupted(), but clears the flag interrupted
● String toString()

– the string contains
● name
● priority
● group

Java, winter semester 2019
26. 11. 2019 21

java.util.concurrentjava.util.concurrent
● java.util.concurrent
● java.util.concurrent.atomic
● java.util.concurrent.locks

– since JDK 5
– contain classes for concurrent access to data, locks,

semaphores,...

Java, winter semester 2019
26. 11. 2019 22

java.util.concurrentjava.util.concurrent
● Executor

– interface
– multiple implementations

● ThreadPoolExecutor, ForkJoinPool,...
– void execute(Runnable command)

● executes the “command” at some time in future
● ExecutorService

– interface, extends Executor
– additional methods

● Future<T> submit(Callable<T> task)
● List<Future<T>> invokeAll(Collection<? extends

Callable<T>> tasks)
● ...

Java, winter semester 2019
26. 11. 2019 23

java.util.concurrentjava.util.concurrent
● Callable<T>

– interface
– T call() throws Exception
– equivalent to Runnable, but returns a value and can

throw an exception

● Future<T>
– interface
– a result of an asynchronous operation
– T get()

● returns the result
● waits if the result is not yet available

Java, winter semester 2019
26. 11. 2019 24

ForkJoinPoolForkJoinPool
● od Java 7
● implements ExecutorService
● intended for “divide and conquer”
● supports “work-stealing”

● ForkJoinTask<V>
– a task for ForkJoinPool, an abstract class
– children

● RecursiveAction
– abstract void compute()

● RecursiveTask<V>
– abstract V compute()

Java, winter semester 2019
26. 11. 2019 25

ForkJoinPoolForkJoinPool
● methods for executing tasks

– execute()
● asynchronous execution

– submit(), submitAll()
● asynchronous execution + returns a Future

– invoke(), invokeAll()
● execution and waiting for a result

● similar methods are also in ForkJoinTask
– execution of “subtasks”

● obtaining the pool
– constructors, or
– ForkJoinPool.commonPool()

Java, winter semester 2019
26. 11. 2019 26

ForkJoinPoolForkJoinPool
class CustomRecursiveAction extends RecursiveAction {

 @Override
 protected void compute() {
 if (...) {
 ForkJoinTask.invokeAll(createSubtasks());
 }
 }

 public static void main() {
 CustomRecursiveAction cra =

new CustomRecursiveAction()
 ForkJoinPool.commonPool().invoke(cra);
 }
}

Java, winter semester 2019
26. 11. 2019 27

ExecutorsExecutors
● a class
● only static utility methods

– converting Runnable into Callable
– obtaining different thread-pools

● newFixedThreadPool()
● newSingleThreadPool()
● …

– ...

Java, winter semester 2019
26. 11. 2019 28

JAVAJAVA

java.lang.System

Java, winter semester 2019
26. 11. 2019 29

java.lang.Systemjava.lang.System
● contains static elements only
● no instance can be created

● fields
– java.io.InputStream in

● standard input
– java.io.PrintStream out

● standard output
– java.io.PrintStream err

● standard error output

Java, winter semester 2019
26. 11. 2019 30

MetodsMetods
● void arraycopy(Object src, int srcPos,
Object dest, int destPos, int length)
– copies arrays
– works even if src==dest

● long currentTimeMillis()
– current time in milliseconds since 1.1.1970
– precision depends on OS

● long nanoTime()
– value of a system timer in nanoseconds
– nanoseconds since some fixed but arbitrary time

● can even in future, i.e. the returned value can negative
– used for measurements of time intervals
– since Java 5

Java, winter semester 2019
26. 11. 2019 31

MetodsMetods
● void exit(int status)

– terminates JVM
● void gc()

– recommendation for JVM to run garbage collector
● void setIn(InputStream s)
void setOut(PrintStream s)
void setErr(PrintStream s)
– sets the particular input/output

● int identityHashCode(Object x)
– returns default hash code of the object

Java, winter semester 2019
26. 11. 2019 32

PropertiesProperties
● tuples

– key – value
– String (both keys and values)

● system and user-defined
● Properties getProperties()

– returns all set properties
– java.util.Properties – extends java.util.Hashtable

● String getProperty(String key)
– returns the value
– if the key is not set, returns null

● String getProperty(String key, String
def)
– returns the value
– if the key is not set, returns def

Java, winter semester 2019
26. 11. 2019 33

PropertiesProperties
● void setProperties(Properties props)

– sets properties in props
● String setProperty(String key, String
val)
– sets the given property property
– returns its previous value or null

● String clearProperty(String key)
– clears the given property

● setting properties at JVM start
– parameter -Dkey=value
– ex. java -DdefaultDir=/usr Program

● typically, hierarchical names (separated by dots) are
used as the keys

Java, winter semester 2019
26. 11. 2019 34

Always set propertiesAlways set properties
● java.version
● java.home

– directory where the Java is installed
● java.class.path
● java.io.tmpdir

– directory for temporary files
● os.name, os.architecture, os.version

– identification of an operating system
● file.separator

– the separator of names in a path (unix "/", win "\")
● path.separator

– the path separator (unix ":", win ";")
● line.separator

– the line separator (unix "LF", win "CR LF")

Java, winter semester 2019
26. 11. 2019 35

Always set propertiesAlways set properties
● user.name

– name of the current user
● user.home

– user's home dir
● user.dir

– current directory
● plus several properties that identifies VM

Java, winter semester 2019
26. 11. 2019 36

Environment variablesEnvironment variables
● Map<String, String> getenv()

– all set environment variables
– unmodifiable collection

● String getenv(String name)
– variable with the given name

Java, winter semester 2019
26. 11. 2019 37

JAVAJAVA

java.lang.Runtime

Java, winter semester 2019
26. 11. 2019 38

RuntimeRuntime
● there is always a single instance

– no other instances can be created
● Runtime getRuntime()

– static method
– returns the instance of the Runtime

● int availableProcessors()
– depends on the implementation
– returned value may change during a program execution

● long freeMemory()
– free memory available for JVM

● long maxMemory()
– maximal available memory for JVM

● void halt(int status)
– immediately terminates JVM, does not wait for anything

Java, winter semester 2019
26. 11. 2019 39

RuntimeRuntime
● void addShutdownHook(Thread hook)

– sets a thread to be run during JVM termination
– hook – created but not started thread
– there can be several set hooks

● they will start in some unspecified order
– daemon threads run even during JVM termination
– hooks are not executed if JVM was terminated using

halt()

● boolean removeShutdownHook(Thread hook)
– removes the set hook
– return false if the given thread has not been set

Java, winter semester 2019
26. 11. 2019 40

RuntimeRuntime
● Process exec(String command)

– launches an external process
– several variants (with different parameters)
– may not always work correctly

● the class Process
– represents an external process
– methods

● void destroy()
– kills the process

● int exitValue()
– return value of the process

● int waitFor()
– waits until the process terminates
– returns the return value
– can be interrupted

Java, winter semester 2019
26. 11. 2019 41

JAVAJAVA

java.lang.Math

Java, winter semester 2019
26. 11. 2019 42

java.lang.Mathjava.lang.Math
● static fields and methods for basic mathematic

constants and operations

● fields
– PI, E

● methods
– abs, ceil, floor, round, min, max,...
– pow, sqrt,...
– sin, cos, tan, asin, acos, atan,...
– toDegrees, toRadians,...
– ...

http://creativecommons.org/licenses/by-nc/4.0/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

