
Java, summer semester 2020

JAVAJAVA

Java Micro Edition

Java, summer semester 2020

OverviewOverview
● predecessors

– Personal Java (1997)
– Embedded Java (1998)

● JME definition – via JCP
– JCP – Java Community Process

● JME is not a single SW package
– a set of technologies and specifications
– defines

● configuration
● profiles
● optional packages

Java, summer semester 2020
3

Java platformJava platform
● JSE – standard edition
● JEE – enterprise edition
● JME – micro edition

JSEJEE JME
Java
Card
API

Java, summer semester 2020

ArchitectureArchitecture
● several layers
● configuration

– VM specification
– core API
– requirements on device

(memory, CPU,...)
● profile

– API for application creation
(for specific devices – mob.
phone, PDA,...)

– application lifecycle, GUI,...
● optional packages

– APIs for specialized
services HWHW

OSOS

ConfigurationConfiguration

ProfileProfile

Optional packages

ApplicationApplication

S
pe

ci
fic

 p
ac

ka
g

es
fo

r
a

gi
ve

n
de

vi
ce

Java, summer semester 2020

SoftwareSoftware
● Java ME SDK

– http://www.oracle.com/technetwork/java/javame/

Java, summer semester 2020

Technology overviewTechnology overview
● JSR 30 – CLDC 1.0 – Connected, Limited Device

Configuration
● JSR 139 – CLDC 1.1 – Connected, Limited Device

Configuration 1.1
● JSR 36 – CDC – Connected Device Configuration
● JSR 218 – CDC 1.1 – Connected Device Configuration 1.1

● JSR 37 – MIDP 1.0 – Mobile Information Device Profile
● JSR 118 – MIDP 2.0 – Mobile Information Device Profile 2.0
● JSR 271 – MIDP 3.0 – Mobile Information Device Profile 3.0
● JSR 46 – FP – Foundation Profile
● JSR 129 – PBP – Personal Basis Profile
● JSR 62 – PP – Personal Profile

● JSR 82 – BTAPI – Java APIs for Bluetooth
● JSR 120 – WMA – Wireless Messaging API
● ...

Java, summer semester 2020

ConfigurationConfiguration
● core specification
● intended for a large family of devices with similar

features
● defines

– requirements on CPU, MEM, net connectivity
– features of VM
– core API (derived from JSE)

● configurations
– CLDC – Connected, Limited Device Configuration

● mobile phones, PDA,...
– CDC – Connected Device Configuration

● PDA, navigation systems, set-top boxes,...

Java, summer semester 2020

ProfileProfile
● over a configuration
● adds API for application creation

– defines
● application lifecycle
● API for GUI
● data persistence
● …

● over CDLC
– MIDP – Mobile Information Device Profile

● over CDC
– Foundation Profile
– Personal Profile

Java, summer semester 2020

CLDC 1.0CLDC 1.0
● the smallest configuration
● for small devices with limited resources
● HW requirements

– 16-bit or 32-bit processor
– 128 kB permanent memory, 32 kB operating memory
– energy source – battery
– slow connection to network

● limited VM
– KVM (Kilo VM)

Java, summer semester 2020

CLDC 1.0 – KVMCLDC 1.0 – KVM
● no floating-point operations and types
● no object finalization
● limited set of exceptions
● no

– JNI
– reflection
– user defined classloaders
– deamon threads and thread groups
– weak references

● security model – sandbox
● two phases of code verifications

Java, summer semester 2020

CLDC 1.0 – KVM – verificationCLDC 1.0 – KVM – verification
● regular byte-code verification – resource demanding

– size 50 kB, operation memory up to 100 kB
– CPU performance demanding

● divided to two parts
– preverification

● during development
– typically performed by a developer

● the StackMap field added to every class
● some instructions (jumps) replaced by equivalent ones
● size of a class increased by approx. 5%

– verifications
● only linear analysis
● fast, nondemanding

– verifier size ~ 10 kB, operating memory < 100 B

Java, summer semester 2020

CLDC 1.0 – APICLDC 1.0 – API
● java.lang

– Object, Class, Runtime, System, Thread, Runnable,
String, StringBuffer, Throwable

– Boolean, Byte, Short, Integer, Long, Character
– Math

● java.util
– Vector, Stack, Hashtable, Enumeration
– Date, Calendar, TimeZone
– Random

● java.io
– InputStream, OutputStream, ByteArrayInputStream,

ByteArrayOutputStream, DataInput, DataOutput,
DataInputStream, DataOutputStream, Reader, Writer,
InputStreamReader, OutputStreamWriter, PrintStream

Java, summer semester 2020

CLDC 1.0 – APICLDC 1.0 – API
● Generic Connection Framework

– javax.microedition.io
– streams
– a common abstraction for different kinds of connections
– Connector.open("<protocol>:<address>;<parameters>")
– e.g.:

● Connector.open("http://www.foo.com");
● Connector.open("socket://129.144.111.222:9000");
● Connector.open("comm:0;baudrate=9600");
● Connector.open("datagram://129.144.111.333");
● Connector.open("file:/foo.dat");

– no implementation at the configuration level

Java, summer semester 2020

CLDC 1.1CLDC 1.1
● support of floating-point operations
● weak references
● enhanced classes Date, Calendar, TimeZone
● threads has names
● minimal required memory 192 kB

Java, summer semester 2020

CDCCDC
● 32-bit processor, 2 MB RAM, 2.5 MB ROM
● VM – complete features of JSE VM
● CDC is superset of CLDC
● java.io, java.util.zip, java.util.jar, java.net,

java.security

JSE CDC

CLDC

CLDC⊆CDC

Java, summer semester 2020

CDC profilesCDC profiles
● Foundation Profile

– core profile
– no GUI
– text manipulation, HTTP, sockets
– java.math
– java.util.zip, java.util.jar
– certificates, encryption

● Personal Basis Profile
– over FP, subset of PP
– part of AWT, JavaBeans support
– application – Xlet
– RMI communication

● Personal Profile
– similar to JSE
– complete AWT

Java, summer semester 2020

MIDPMIDP
● Mobile Information Device Profile
● over CLDC
● for mobile phones
● HW requirements (MIDP 1.0)

– display min. 96x54x1
– aspect ratio 1:1
– keyboard or touch screen
– 128 kB permanent memory
– 8 kB permanent memory for applications data
– 32 kB operating memory
– duplex connection to network

● HW requirements (MIDP 2.0)
– 256 kB permanent memory
– 128 kB operating memory
– sound

Java, summer semester 2020

MIDP 1.0MIDP 1.0
● application – MIDlet
● support for GUI
● support for network communication (GCF)

– HTTP
● persistent application data

– Record Management Storage (RMS)
● over the air (OTA)

– a way to install application to a device
● packages

– javax.microedition.midlet
– javax.microedition.lcdgui
– javax.microedition.rms

Java, summer semester 2020

MIDP 2.0MIDP 2.0
● better support of network

– HTTPS, TCP and UDP sockets
● multimedia support

– Mobile Media API (MMAPI)
● support for game creation

– GameCanvas, Layers, Sprites
● certificates,...
● enhanced GUI
● push registry

– launching MIDlets as a reaction to an incoming
connection

● storage can be shared among several applications

Java, summer semester 2020

MIDP 3.0MIDP 3.0
● JSR 271

– December 2009
● parallel execution of several MIDlets and their

communication
● support of IPv6
● LIBlets

– shared libraries

Java, summer semester 2020

MIDletMIDlet
● an application for MIDP
● similar to applets
● extends javax.microedition.midlet.MIDlet
● application lifecycle

PausedPaused

ActiveActive DestroyedDestroyed

constructor

startApp() pauseApp()

destroyApp()

destroyApp()

Java, summer semester 2020

Methods of MIDletMethods of MIDlet
● startApp()

– called when when the ACTIVE state is entered
– intended to be overridden

● pauseApp()
– called when when the PAUSED state is entered
– intended to be overridden

● destroyApp(boolean unconditional)
– called when when the DESTROYED state is entered
– if the parameter is false, the midlet can refuse to be

destroyed
– intended to be overridden

● notifyDestroyed()
– terminates the midlet (destroyApp is not called)

Java, summer semester 2020

Methods of MIDlet (cont.)Methods of MIDlet (cont.)
● notifyPaused()

– the midlet wants to enter the PAUSED state
– the pauseApp is not called

● similar to notifyDestroyed
● resumeRequest()

– opposite to notifyPaused
– the midlet wants from the PAUSED state to ACTIVE
– can be called e.g. from a timer or a background thread

Java, summer semester 2020

MIDlet – implementationMIDlet – implementation
public class Main extends MIDlet {
 public Main() {
 }

 public void startApp() {
 Displayable current = Display.getDisplay(this).getCurrent();
 if (current == null) {
 HelloScreen helloScreen = new HelloScreen(this);
 Display.getDisplay(this).setCurrent(helloScreen);
 }
 }

 public void pauseApp() { }

 public void destroyApp(boolean b) { }

 void exitRequested() {
 destroyApp(false);
 notifyDestroyed();
 }
}

Java, summer semester 2020

MIDlet UIMIDlet UI
● a single window can be shown at a single moment

– several windows – switching

 Display.getDisplay(this).setCurrent(helloScreen);

● if several MIDlets run concurrently, only one of them
can access the display

Java, summer semester 2020

MIDlet distributionMIDlet distribution
● 2 files

– JAR archive – application code
– JAD – Java Archive Descriptor

● format
– attribute-name: attribute-value

● the same information must be also in the JAR manifest
● a JAD example

MIDlet-Name: HelloWorld
MIDlet-Version: 0.0.1
MIDlet-Vendor: PH
MIDlet-Jar-URL: HelloWorld.jar
MIDlet-Jar-Size: 1949
MIDlet-1: HelloWorld,,cz.cuni.mff.java.helloworld.Main
MicroEdition-Profile: MIDP-1.0
MicroEdition-Configuration: CLDC-1.0

Java, summer semester 2020

MIDlet distribution (cont.)MIDlet distribution (cont.)
● several midlets can be in a single package

MIDlet-1: HelloWorld,,cz.cuni.mff.java.helloworld.Main
MIDlet-2: HelloWorld2,,cz.cuni.mff.java.helloworld.Main2
MIDlet-3: HelloWorld3,,cz.cuni.mff.java.helloworld.Main3

● the descriptor can contain user-defined attributes
– can be obtained from the application

● MIDlet.getAppProperty(String key)

Java, summer semester 2020

Record Management StoreRecord Management Store
● storing byte arrays

– it is not a filesystem
● each midlet has own storage

– MIDP 2.0 – storages can be shared
● operations are atomic
● stored data are persistent
● if the midlet is removed from a device, its storage is

also deleted
● the javax.microedition.rms package

– the RecordStore class
● openRecordStore()
● addRecord()
● getRecord()

Java, summer semester 2020

GUIGUI
● the javax.microedition.lcdui package
● low-level

– Canvas
● drawing to display
● handling keyboard/touch events

● high-level
– device independent
– low-level features cannot be influenced

● fonts, etc.
– portable

Java, summer semester 2020

GUIGUI

abstract
Displayable

abstract
Displayable

abstract
Canvas

abstract
Canvas

abstract
Screen

abstract
Screen

AlertAlert FormForm ListList TextBoxTextBoxvlastní
implementace

vlastní
implementace

Java, summer semester 2020

GUI – MIDP 2.0GUI – MIDP 2.0
● javax.microedition.lcdui.game

– GameCanvas
● extends Canvas
● allows for

– querying keys states
– off-screen buffer

– Layer
● the abstract class for visible elements of a game
● children

– Sprite
– TiledLayer

– LayerManager
● the manager of the visible elements

Java, summer semester 2020

GUI – MIDP 2.0GUI – MIDP 2.0
● javax.microedition.media

– playing multimedia
– the Manager class

● static methods
● void playTone(int note, int duration, int volume)
● String[] getSupportedContentTypes(String protocol)
● String[] getSupportedProtocols(String content_type)
● Player createPlayer(String locator)
● Player createPlayer(InputStream stream, String type)

Java, summer semester 2020

Optional packagesOptional packages
● extend profiles
● defined based on JCP
● separately for CLDC or CDC (or for both)

● Wireless Messaging API (WMA) JSR 120, JSR 205
● JME Web Services APIs (WSA) JSR 172
● Bluetooth API JSR-82

● JME RMI Optional Package (RMI OP) JSR 66
● JDBC Optional Package for CDC/Foundation Profile

API JSR 169

Java, summer semester 2020

Java ME 8Java ME 8
● 2014
● goal – unifying ME and SE
● CLDC 8
● MEEP 8

– ME Embedded Profile 8

Java, summer semester 2020

CLDC 8CLDC 8
● CLDC 8 – extended strict subset of SE 8

● VM supports
Java VM specification for SE 7
– without

● the InvokeDynamic instruction
● reflection and runtime annotations

● language almost as Java 8
– without

● lambda functions
● reflection
● serialization
● JNI
● user-defined classloaders
● ...

SE

CLDC

Java, summer semester 2020

CLDC 8CLDC 8
● verification

– bytecode versions 51+ (JDK 7+)
● without preverification

– bytecode versions 48 and older (JDK 1.4)
● mandatory preverification

● enhanced Generic Connection Framework
– supporting more protocols
– IP multicast
– specific options for protocols

● ConnectionOption
– listing “access points”

● 3GPP, CDMA, Wi-Fi,...

● supporting ServiceLoader

Java, summer semester 2020

MEEP 8MEEP 8
● Java ME Embedded Profile (MEEP) 8
● built on CLDC 8
● profiles

– minimal
● core API, application model
● minimum – 128 kB RAM & 1 MB Flash

– standard
● services, multitasking, ...
● minimum – 512 kB RAM & 2 MB Flash

– full
● complete API
● minimum – 2 MB RAM & 4 MB Flash

Java, summer semester 2020

MEEP 8MEEP 8
● packages

– mandatory
● javax.microedition.midlet

– optional
● javax.microedition.swm
● javax.microedition.cellular
● javax.microedition.event
● javax.microedition.power
● javax.microedition.io
● javax.microedition.lui
● javax.microedition.key
● javax.microedition.media
● javax.microedition.rms

Java, summer semester 2020

MEEP 8MEEP 8
● applications

– MIDlets (IMlets), LIBlets

– javax.microedition.midlet.MIDlet
● notifyPaused(), pauseApp(), resumeRequest()

deprecated

● services
– ServiceLoader
– service provider and consumer can be in different

applications

Java, summer semester 2020

MEEP 8MEEP 8
● Device I/O API

– accessing devices
– GPIO, I2C, SPI, UART,...

Java, summer semester 2020

Java EmbeddedJava Embedded
● a complete Java platform
● several variants

– Java ME Embedded
– Java ME Embedded Client
– ...

Java, summer semester 2020

Java ME EmbeddedJava ME Embedded
● based on MEEP and CLDC
● intended for microcontrollers, etc.
● headless

– no UI
● platforms

– ARM
● Raspberry Pi

– STM32
– ...

● < 1 MB RAM

Java, summer semester 2020

Java ME Embedded ClientJava ME Embedded Client
● based on JME and CDC
● < 10 MB RAM

Java, summer semester 2020

JAVAJAVA

Pi4J

Java, summer semester 2020

Pi4JPi4J
● http://pi4j.com/
● Raspberry Pi
● pro JSE
● GPIO, UART

Java, summer semester 2020

Pi4J: examplePi4J: example
final GpioController gpio = GpioFactory.getInstance();

final GpioPinDigitalOutput pin =
 gpio.provisionDigitalOutputPin(RaspiPin.GPIO_01,
 "MyLED", PinState.HIGH);
pin.setShutdownOptions(true, PinState.LOW);

Thread.sleep(5000);

pin.low();

Thread.sleep(5000);

pin.pulse(1000, true);

gpio.shutdown();

Java, summer semester 2020

JAVAJAVA

Real-Time Java

Java, summer semester 2020

Real-time systemReal-time system
● non-real-time system

– a system behaves correctly if produces correct results
● real-time system

– a system behaves correctly if produces correct results
at required time

Java, summer semester 2020

Real-time systemReal-time system
● example

– a medical device has to detect changes of patient
state and react on time

image source Issovic, D.:Real-time systems, basic course

Java, summer semester 2020

Real-time systemReal-time system
● or...

image source Issovic, D.:Real-time systems, basic course

Java, summer semester 2020

Real-time systemReal-time system

image source Issovic, D.:Real-time systems, basic course

● example
– the airbag cannot inflate too early or too late

real-time ≠ quickly

Java, summer semester 2020

Real-time systemReal-time system
● soft real-time
● hard real-time
● safety-critical

Java, summer semester 2020

Java and RTJava and RT
● Java

– simple
– widely used
– many libraries
– portable

● but
– no real-time scheduling
– no support for periodic execution
– no support for aperiodic events
– GC issues
– issues with direct access to memory
– issues with managing devices
– ...

Java, summer semester 2020

Garbage collectorGarbage collector

Java, summer semester 2020

Real-time Specification for JavaReal-time Specification for Java
● RTSJ
● 1999 – JSR-1
● no changes in syntax
● it extends Java by

– Thread Scheduling and Dispatching
– Memory Management
– Synchronization and Resource Sharing
– Asynchronous Event Handling
– Asynchronous Transfer of Control and Asynchronous

Thread Termination
– High resolution time
– Physical and Raw Memory Access

Java, summer semester 2020

RTSJ – schedulingRTSJ – scheduling
● Fixed-priority round robin scheduler

– own one can be added
● At least 28 real-time priorities (in addition to 10

common ones)

● Periodic threads
– can start at specific time
– have period and deadline

● Aperiodic events
– a schedulable object, which is executes as a reaction

to an event

Java, summer semester 2020

RTSJ – memoryRTSJ – memory
● NoHeapRealtimeThread

– a thread without heap access
– cannot be blocked by GC

● heap
– as usual

● immortal memory
– objects in the im. memory cannot be freed
– for global data

● scoped memory
– memory regions
– objects freed at once when all threads leave the region
– suitable for calling methods from the std library

Java, summer semester 2020

RTSJ – memoryRTSJ – memory
● rules for references between objects

Immortal Memory Heap Memory

Java, summer semester 2020

RTSJRTSJ
● problems

– memory regions are not intuitive
– change of the classical programming model with GC
– assigning a reference can fail

● there are real-time garbage collectors

Java, summer semester 2020

Ravenscar JavaRavenscar Java
● restriction of RTJS
● inspired by “Ravenscar for Ada”
● goal

– better analyzability and predictability

● an example of the restriction
– no GC

Java, summer semester 2020

RTSJRTSJ
● RTSJ 2.0 – JSR 282

– draft

● Base Module
– Schedulables
– Events & Handlers
– Priority Inheritance
– Clock
– MemoryArea

● HeapMemory
● ImmortalMemory

– ...

● Device
– Happenings
– RawMemory
– ISR (Option)

● Alternate Memory
– physical
– scoped

● POSIX
– POSIX signals

Java, summer semester 2020

JAVAJAVA

LeJOS

Java, summer semester 2020

OverviewOverview
● http://www.lejos.org/
● a firmware for LEGO Mindstorm
● contains a Java virtual machine

i.e. LEGO robots can be programmed in Java

Java, summer semester 2020

ExampleExample
public static void main(String[] argv) {
 TouchSensor touchL = new TouchSensor(SensorPort.S4);
 TouchSensor touchR = new TouchSensor(SensorPort.S1);
 UltrasonicSensor sonar = new UltrasonicSensor(SensorPort.S2);

 Motor.A.forward();
 Motor.C.forward();
 LCD.drawString("Press ESC to quit", 0, 0);
 while (true) {
 if (Button.ESCAPE.isPressed()) { System.exit(0); }
 if (touchL.isPressed() || touchR.isPressed() || (sonar.getDistance() <
 40)) {
 Motor.A.stop(); Motor.C.stop();
 sleep(1000);
 Motor.A.backward(); Motor.C.backward();
 sleep(1000);
 Motor.A.forward(); Motor.C.backward();
 sleep(1000);
 Motor.A.stop(); Motor.C.stop();
 sleep(1000);
 Motor.A.forward(); Motor.C.forward();
 }
 }

 }

Java, summer semester 2020

LeJOSLeJOS
● Java 7
● mix Java SE a ME
● limitations

– no classloaders
– small size of applications

– after compilation, a binary image of the application is
created

● it is loaded to the “brick”

● nxjlink -v ClassWithMain -o App.nxj
● nxjupload App.nxj

Java, summer semester 2020
66This slides are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Slides version AJ12.en.2020.01

http://creativecommons.org/licenses/by-nc/4.0/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

