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OverviewOverview
● predecessors

– Personal Java (1997)
– Embedded Java (1998)

● JME definition – via JCP
– JCP – Java Community Process

● JME is not a single SW package
– a set of technologies and specifications
– defines 

● configuration
● profiles
● optional packages
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Java platformJava platform
● JSE – standard edition
● JEE – enterprise edition
● JME – micro edition

JSEJEE JME
Java
Card
API
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ArchitectureArchitecture
● several layers
● configuration

– VM specification
– core API
– requirements on device 

(memory, CPU,...)
● profile

– API for application creation 
(for specific devices – mob. 
phone, PDA,...)

– application lifecycle, GUI,...
● optional packages

– APIs for specialized 
services HWHW

OSOS

ConfigurationConfiguration

ProfileProfile

Optional packages

ApplicationApplication
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SoftwareSoftware
● Java ME SDK

– http://www.oracle.com/technetwork/java/javame/



Java, summer semester 2020

Technology overviewTechnology overview
● JSR 30 – CLDC 1.0 – Connected, Limited Device 

Configuration
● JSR 139 – CLDC 1.1 – Connected, Limited Device 

Configuration 1.1
● JSR 36 – CDC – Connected Device Configuration
● JSR 218 – CDC 1.1 – Connected Device Configuration 1.1

● JSR 37 – MIDP 1.0 – Mobile Information Device Profile
● JSR 118 – MIDP 2.0 – Mobile Information Device Profile 2.0
● JSR 271 – MIDP 3.0 – Mobile Information Device Profile 3.0
● JSR 46 – FP – Foundation Profile
● JSR 129 – PBP – Personal Basis Profile
● JSR 62 – PP – Personal Profile

● JSR 82 – BTAPI – Java APIs for Bluetooth
● JSR 120 – WMA – Wireless Messaging API
● ...



Java, summer semester 2020

ConfigurationConfiguration
● core specification
● intended for a large family of devices with similar 

features
● defines

– requirements on CPU, MEM, net connectivity
– features of VM 
– core API (derived from JSE)

● configurations
– CLDC – Connected, Limited Device Configuration

● mobile phones, PDA,...
– CDC – Connected Device Configuration

● PDA, navigation systems, set-top boxes,...



Java, summer semester 2020

ProfileProfile
● over a configuration
● adds API for application creation

– defines
● application lifecycle
● API for GUI
● data persistence
● …

● over CDLC
– MIDP – Mobile Information Device Profile

● over CDC
– Foundation Profile
– Personal Profile
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CLDC 1.0CLDC 1.0
● the smallest configuration
● for small devices with limited resources
● HW requirements

– 16-bit or 32-bit processor
– 128 kB permanent memory, 32 kB operating memory
– energy source – battery
– slow connection to network

● limited VM
– KVM (Kilo VM)
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CLDC 1.0 – KVMCLDC 1.0 – KVM
● no floating-point operations and types
● no object finalization
● limited set of exceptions
● no

– JNI
– reflection
– user defined classloaders
– deamon threads and thread groups
– weak references

● security model – sandbox
● two phases of code verifications
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CLDC 1.0 – KVM – verificationCLDC 1.0 – KVM – verification
● regular byte-code verification – resource demanding

– size 50 kB, operation memory up to 100 kB
– CPU performance demanding

● divided to two parts
– preverification

● during development
– typically performed by a developer

● the StackMap field added to every class
● some instructions (jumps) replaced by equivalent ones
● size of a class increased by approx. 5%

– verifications
● only linear analysis
● fast, nondemanding

– verifier size ~ 10 kB, operating memory < 100 B
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CLDC 1.0 – APICLDC 1.0 – API
● java.lang

– Object, Class, Runtime, System, Thread, Runnable, 
String, StringBuffer, Throwable

– Boolean, Byte, Short, Integer, Long, Character
– Math

● java.util
– Vector, Stack, Hashtable, Enumeration
– Date, Calendar, TimeZone
– Random

● java.io
– InputStream, OutputStream, ByteArrayInputStream, 

ByteArrayOutputStream, DataInput, DataOutput, 
DataInputStream, DataOutputStream, Reader, Writer, 
InputStreamReader, OutputStreamWriter, PrintStream
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CLDC 1.0 – APICLDC 1.0 – API
● Generic Connection Framework

– javax.microedition.io
– streams
– a common abstraction for different kinds of connections
– Connector.open("<protocol>:<address>;<parameters>")
– e.g.:

● Connector.open("http://www.foo.com");
● Connector.open("socket://129.144.111.222:9000");
● Connector.open("comm:0;baudrate=9600");
● Connector.open("datagram://129.144.111.333");
● Connector.open("file:/foo.dat");

– no implementation at the configuration level
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CLDC 1.1CLDC 1.1
● support of floating-point operations
● weak references
● enhanced classes Date, Calendar, TimeZone
● threads has names
● minimal required memory 192 kB
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CDCCDC
● 32-bit processor, 2 MB RAM, 2.5 MB ROM
● VM – complete features of JSE VM
● CDC is superset of CLDC
● java.io, java.util.zip, java.util.jar, java.net, 

java.security

JSE CDC

CLDC

CLDC⊆CDC
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CDC profilesCDC profiles
● Foundation Profile

– core profile
– no GUI
– text manipulation, HTTP, sockets
– java.math
– java.util.zip, java.util.jar
– certificates, encryption

● Personal Basis Profile
– over FP, subset of PP
– part of AWT, JavaBeans support
– application – Xlet
– RMI communication

● Personal Profile
– similar to JSE
– complete AWT
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MIDPMIDP
● Mobile Information Device Profile
● over CLDC
● for mobile phones
● HW requirements (MIDP 1.0)

– display min.  96x54x1
– aspect ratio 1:1
– keyboard or touch screen
– 128 kB permanent memory
– 8 kB permanent memory for applications data
– 32 kB operating memory
– duplex connection to network

● HW requirements (MIDP 2.0)
– 256 kB permanent memory
– 128 kB operating memory
– sound
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MIDP 1.0MIDP 1.0
● application – MIDlet
● support for GUI
● support for network communication (GCF)

– HTTP
● persistent application data

– Record Management Storage (RMS)
● over the air (OTA)

– a way to install application to a device
● packages

– javax.microedition.midlet
– javax.microedition.lcdgui
– javax.microedition.rms
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MIDP 2.0MIDP 2.0
● better support of network

– HTTPS, TCP and UDP sockets
● multimedia support

– Mobile Media API (MMAPI)
● support for game creation

– GameCanvas, Layers, Sprites
● certificates,...
● enhanced GUI
● push registry

– launching MIDlets as a reaction to an incoming 
connection

● storage can be shared among several applications
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MIDP 3.0MIDP 3.0
● JSR 271

– December 2009
● parallel execution of several MIDlets and their 

communication
● support of IPv6
● LIBlets 

– shared libraries
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MIDletMIDlet
● an application for MIDP
● similar to applets
● extends javax.microedition.midlet.MIDlet
● application lifecycle

PausedPaused

ActiveActive DestroyedDestroyed

constructor

startApp() pauseApp()

destroyApp()

destroyApp()
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Methods of MIDletMethods of MIDlet
● startApp()

– called when when the ACTIVE state is entered
– intended to be overridden 

● pauseApp()
– called when when the PAUSED state is entered
– intended to be overridden 

● destroyApp(boolean unconditional)
– called when when the DESTROYED state is entered
– if the parameter is false, the midlet can refuse to be 

destroyed
– intended to be overridden

● notifyDestroyed()
– terminates the midlet (destroyApp is not called)



Java, summer semester 2020

Methods of MIDlet (cont.)Methods of MIDlet (cont.)
● notifyPaused()

– the midlet wants to enter the PAUSED state
– the pauseApp is not called

● similar to notifyDestroyed
● resumeRequest()

– opposite to notifyPaused
– the midlet wants from the PAUSED state to ACTIVE
– can be called e.g. from a timer or a background thread
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MIDlet – implementationMIDlet – implementation
public class Main extends MIDlet {
  public Main() {
  }

  public void startApp() {
    Displayable current = Display.getDisplay(this).getCurrent();
    if (current == null) {
      HelloScreen helloScreen = new HelloScreen(this);
      Display.getDisplay(this).setCurrent(helloScreen);
    }
  }

  public void pauseApp() {  }

  public void destroyApp(boolean b) {  }

  void exitRequested() {
    destroyApp(false);
    notifyDestroyed();
  }
}
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MIDlet UIMIDlet UI
● a single window can be shown at a single moment

– several windows – switching
     
      Display.getDisplay(this).setCurrent(helloScreen);

● if several MIDlets run concurrently, only one of them 
can access the display
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MIDlet distributionMIDlet distribution
● 2 files

– JAR archive – application code
– JAD – Java Archive Descriptor

● format
– attribute-name: attribute-value

● the same information must be also in the JAR manifest
● a JAD example

MIDlet-Name: HelloWorld
MIDlet-Version: 0.0.1
MIDlet-Vendor: PH
MIDlet-Jar-URL: HelloWorld.jar
MIDlet-Jar-Size: 1949
MIDlet-1: HelloWorld,,cz.cuni.mff.java.helloworld.Main
MicroEdition-Profile: MIDP-1.0
MicroEdition-Configuration: CLDC-1.0
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MIDlet distribution (cont.)MIDlet distribution (cont.)
● several midlets can be in a single package

MIDlet-1: HelloWorld,,cz.cuni.mff.java.helloworld.Main
MIDlet-2: HelloWorld2,,cz.cuni.mff.java.helloworld.Main2
MIDlet-3: HelloWorld3,,cz.cuni.mff.java.helloworld.Main3

● the descriptor can contain user-defined attributes
– can be obtained from the application

● MIDlet.getAppProperty(String key)
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Record Management StoreRecord Management Store
● storing byte arrays

– it is not a filesystem
● each midlet has own storage

– MIDP 2.0 – storages can be shared
● operations are atomic
● stored data are persistent
● if the midlet is removed from a device, its storage is 

also deleted
● the javax.microedition.rms package

– the RecordStore class
● openRecordStore()
● addRecord()
● getRecord()
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GUIGUI
● the javax.microedition.lcdui package
● low-level

– Canvas
● drawing to display
● handling keyboard/touch events

● high-level
– device independent
– low-level features cannot be influenced

● fonts, etc.
– portable



Java, summer semester 2020

GUIGUI

abstract
Displayable

abstract
Displayable

abstract
Canvas

abstract
Canvas

abstract
Screen

abstract
Screen

AlertAlert FormForm ListList TextBoxTextBoxvlastní
implementace

vlastní
implementace
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GUI – MIDP 2.0GUI – MIDP 2.0
● javax.microedition.lcdui.game

– GameCanvas
● extends Canvas
● allows for

– querying keys states
– off-screen buffer

– Layer
● the abstract class for visible elements of a game
● children

– Sprite
– TiledLayer

– LayerManager
● the manager of the visible elements
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GUI – MIDP 2.0GUI – MIDP 2.0
● javax.microedition.media

– playing multimedia
– the Manager class

● static methods
● void playTone(int note, int duration, int volume)
● String[] getSupportedContentTypes(String protocol)
● String[] getSupportedProtocols(String content_type)
● Player createPlayer(String locator)
● Player createPlayer(InputStream stream, String type)
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Optional packagesOptional packages
● extend profiles
● defined based on JCP
● separately for CLDC or CDC (or for both)

● Wireless Messaging API (WMA) JSR 120, JSR 205
● JME Web Services APIs (WSA) JSR 172
● Bluetooth API JSR-82

● JME RMI Optional Package (RMI OP) JSR 66
● JDBC Optional Package for CDC/Foundation Profile 

API JSR 169
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Java ME 8Java ME 8
● 2014
● goal – unifying ME and SE
● CLDC 8
● MEEP 8

– ME Embedded Profile 8
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CLDC 8CLDC 8
● CLDC 8 – extended strict subset of SE 8

● VM supports
Java VM specification for SE 7
– without

● the InvokeDynamic instruction
● reflection and runtime annotations

● language almost as Java 8
– without

● lambda functions
● reflection
● serialization
● JNI
● user-defined classloaders
● ...

SE

CLDC
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CLDC 8CLDC 8
● verification

– bytecode versions 51+ (JDK 7+)
● without preverification

– bytecode versions 48 and older (JDK 1.4)
● mandatory preverification

● enhanced Generic Connection Framework
– supporting more protocols
– IP multicast
– specific options for protocols

● ConnectionOption
– listing “access points”

● 3GPP, CDMA, Wi-Fi,...

● supporting ServiceLoader
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MEEP 8MEEP 8
● Java ME Embedded Profile (MEEP) 8
● built on CLDC 8
● profiles

– minimal
● core API, application model
● minimum – 128 kB RAM & 1 MB Flash

– standard
● services, multitasking, ...
● minimum – 512 kB RAM & 2 MB Flash

– full
● complete API
● minimum – 2 MB RAM & 4 MB Flash
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MEEP 8MEEP 8
● packages

– mandatory
● javax.microedition.midlet

– optional
● javax.microedition.swm
● javax.microedition.cellular
● javax.microedition.event
● javax.microedition.power
● javax.microedition.io
● javax.microedition.lui
● javax.microedition.key
● javax.microedition.media
● javax.microedition.rms
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MEEP 8MEEP 8
● applications

– MIDlets (IMlets), LIBlets

– javax.microedition.midlet.MIDlet
● notifyPaused(), pauseApp(), resumeRequest()

deprecated

● services
– ServiceLoader
– service provider and consumer can be in different 

applications
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MEEP 8MEEP 8
● Device I/O API

– accessing devices
– GPIO, I2C, SPI, UART,...
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Java EmbeddedJava Embedded
● a complete Java platform
● several variants

– Java ME Embedded
– Java ME Embedded Client
– ...
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Java ME EmbeddedJava ME Embedded
● based on MEEP and CLDC
● intended for microcontrollers, etc.
● headless

– no UI
● platforms

– ARM
● Raspberry Pi

– STM32
– ...

● < 1 MB RAM
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Java ME Embedded ClientJava ME Embedded Client
● based on JME and CDC
● < 10 MB RAM
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JAVAJAVA

Pi4J
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Pi4JPi4J
● http://pi4j.com/
● Raspberry Pi
● pro JSE
● GPIO, UART
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Pi4J: examplePi4J: example
final GpioController gpio = GpioFactory.getInstance();

final GpioPinDigitalOutput pin =
     gpio.provisionDigitalOutputPin(RaspiPin.GPIO_01,
        "MyLED", PinState.HIGH);
pin.setShutdownOptions(true, PinState.LOW);

Thread.sleep(5000);

pin.low();

Thread.sleep(5000);

pin.pulse(1000, true);

gpio.shutdown();
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JAVAJAVA

Real-Time Java
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Real-time systemReal-time system
● non-real-time system

– a system behaves correctly if produces correct results
● real-time system

– a system behaves correctly if produces correct results 
at required time
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Real-time systemReal-time system
● example

– a medical device has to detect changes of patient 
state and react on time

image source Issovic, D.:Real-time systems, basic course
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Real-time systemReal-time system
● or...

image source Issovic, D.:Real-time systems, basic course
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Real-time systemReal-time system

image source Issovic, D.:Real-time systems, basic course

● example
– the airbag cannot inflate too early or too late

real-time ≠ quickly
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Real-time systemReal-time system
● soft real-time
● hard real-time
● safety-critical
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Java and RTJava and RT
● Java

– simple
– widely used
– many libraries
– portable

● but
– no real-time scheduling
– no support for periodic execution
– no support for aperiodic events
– GC issues
– issues with direct access to memory
– issues with managing devices
– ...
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Garbage collectorGarbage collector
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Real-time Specification for JavaReal-time Specification for Java
● RTSJ
● 1999 – JSR-1
● no changes in syntax
● it extends Java by

– Thread Scheduling and Dispatching
– Memory Management
– Synchronization and Resource Sharing
– Asynchronous Event Handling
– Asynchronous Transfer of Control and Asynchronous 

Thread Termination
– High resolution time
– Physical and Raw Memory Access
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RTSJ – schedulingRTSJ – scheduling
● Fixed-priority round robin scheduler

– own one can be added
● At least 28 real-time priorities (in addition to 10 

common ones) 

● Periodic threads
– can start at specific time
– have period and deadline

● Aperiodic events
– a schedulable object, which is executes as a reaction 

to an event
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RTSJ – memoryRTSJ – memory
● NoHeapRealtimeThread

– a thread without heap access
– cannot be blocked by GC

● heap
– as usual

● immortal memory
– objects in the im. memory cannot be freed
– for global data

● scoped memory
– memory regions
– objects freed at once when all threads leave the region
– suitable for calling methods from the std library
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RTSJ – memoryRTSJ – memory
● rules for references between objects

Immortal Memory Heap Memory
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RTSJRTSJ
● problems

– memory regions are not intuitive
– change of the classical programming model with GC
– assigning a reference can fail

● there are real-time garbage collectors
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Ravenscar JavaRavenscar Java
● restriction of RTJS
● inspired by “Ravenscar for Ada”
● goal

– better analyzability and predictability

● an example of the restriction
– no GC
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RTSJRTSJ
● RTSJ 2.0 – JSR 282

– draft

● Base Module
– Schedulables
– Events & Handlers
– Priority Inheritance
– Clock
– MemoryArea

● HeapMemory
● ImmortalMemory

– ...

● Device
– Happenings
– RawMemory
– ISR (Option)

● Alternate Memory
– physical
– scoped

● POSIX
– POSIX signals
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JAVAJAVA

LeJOS
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OverviewOverview
● http://www.lejos.org/
● a firmware for LEGO Mindstorm
● contains a Java virtual machine

i.e. LEGO robots can be programmed in Java
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ExampleExample
public static void main(String[] argv) {
  TouchSensor touchL = new TouchSensor(SensorPort.S4);
  TouchSensor touchR = new TouchSensor(SensorPort.S1);
  UltrasonicSensor sonar = new UltrasonicSensor(SensorPort.S2);

  Motor.A.forward();
  Motor.C.forward();
  LCD.drawString("Press ESC to quit", 0, 0);
  while (true) {
    if (Button.ESCAPE.isPressed()) { System.exit(0);   }
    if (touchL.isPressed() || touchR.isPressed() || (sonar.getDistance() <     
                                                                       40)) {
      Motor.A.stop(); Motor.C.stop();
      sleep(1000);
      Motor.A.backward(); Motor.C.backward();
      sleep(1000);
      Motor.A.forward(); Motor.C.backward();
      sleep(1000);
      Motor.A.stop(); Motor.C.stop();
      sleep(1000);
      Motor.A.forward(); Motor.C.forward();
      }
    }

  }
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LeJOSLeJOS
● Java 7
● mix Java SE a ME
● limitations

– no classloaders
– small size of applications

– after compilation, a binary image of the application is 
created

● it is loaded to the “brick”

● nxjlink -v ClassWithMain -o App.nxj
● nxjupload App.nxj
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