
Virtual methods in C# cheat sheet
(version 2 - 2025/11/19)

Assume:
class A {
 public ... void Update(X x) { α }
}
A a = ...;
X x = ...;

↯ What does a.Update(x) mean in this context?
✓ Answer: C# compiler always chooses method based on compile-time expression type of a ~ type A here. So, it
always means “call A.Update(X) method” here.

↯ Does the C# compiler choice depend on content of a or x variables?
✓ Answer: No, it never depends on runtime content of variables a or x!

Assume the A.Update(X) method is non-virtual:
public void Update(X x) { α }

✓ Observation: a.Update(x) always means “call method A.Update(X)” !!!
✓ Observation: Because A.Update(X) is a non-virtual method, static dispatch is always used to call it ~ CLR calls
A.Update(X) implementation provided in type A ~ always code α.

Assume the A.Update(X) method is virtual:
public virtual void Update(X x) { α }

✓ Observation: a.Update(x) always means “call method A.Update(X)” !!!
✓ Observation: virtual always means new virtual method ~ new entry in type A VMT.
✓ Observation: Because A.Update(X) is a virtual method, dynamic dispatch is always used to call it ~ CLR looks up
A.Update(X) implementation at runtime according to actual content of a variable.
!! Note: There is one exception – if we call A.Update(X) via base.Update(X), static dispatch is always used to call it ~
CLR calls A.Update(X) implementation provided in “base” class; if our base class is type A ~ always code α.

Variant 0) Assume:
A a = new A();
X x = ...;

✓ Observation: a.Update(x) calls code α.
Variant 1) Assume:

class B : A {
 public new void Update(X x) { β1 } or alternatively: public void Update(X x) { β1 }
}
A a = new B();
X x = ...;

↯ Is β1 a new implementation of A.Update(X)?
✓ Answer: No – in both cases it is a new non-virtual method with implementation β1.

↯ So, does a.Update(x) call code β1 now?
✓ Answer: No – it will still call the only A.Update(X) implementation available in type B ~ implementation α.

Variant 2) Assume:
class B : A {
 public override void Update(X x) { β2 }
}
A a = new B();
X x = ...;

↯ Is β2 a new implementation of A.Update(X)?
✓ Answer: Yes – it is not a new method, it is a new implementation β2 of inherited virtual method A.Update(X).

↯ So, does a.Update(x) call code β2 now?
✓ Answer: Yes – it will call the A.Update(X) implementation β2.
✓ Observation: override always means providing new implementation for inherited virtual method ~ overwriting
existing entry in type B VMT.

concept 1: method concept 2: implementation

Interfaces in C# cheat sheet
(version 2025/11/18)

Assume:
interface I {
 public void Update(X x);
}
I i = ...;
X x = ...;

↯ What does i.Update(x) mean in this context?
✓ Answer: C# compiler always chooses method based on compile-time expression type of i ~ type I here. So, it
always means “call I.Update(X) method” here.

↯ Does the C# compiler choice depend on content of i or x variables?
✓ Answer: No, it never depends on runtime content of variables i or x!

Assume the I.Update(X) contract is fulfilled by A.Update(X) method:
class A : I {
 public void Update(X x) { α }
}

I i = ...;
X x = ...;

✓ Observation: Implementing interface by “: I” always means fulfill the contract ~ filling entry in type A method
table for interface I.
✓ Observation: i.Update(x) always means “call method I.Update(X)” !!!
✓ Observation: Because I.Update(X) is an interface method, CLR looks up at runtime what method fulfills the
contract for actual content of i variable (it is a variant of dynamic dispatch).

Variant 0) Assume:
I i = new A();
X x = ...;

✓ Observation: i.Update(x) calls code α.
Variant 1) Assume:

class B : A {
 public new void Update(X x) { β1 } or alternatively: public void Update(X x) { β1 }
}
I i = new B();
X x = ...;

↯ Does the new non-virtual method B.Update(X) fulfill the I.Update(X) contract?
✓ Answer: No – in both cases the contract given by interface I is fulfilled by A and inherited without change to B.

↯ So, does i.Update(x) call code β1 now?
✓ Answer: No – it will still call the A.Update(X) method, as A.Update(X) fulfills I.Update(X) contract for both A
and B types ~ implementation α gets called.

Variant 2) Assume:
class B : A, I {
 public new void Update(X x) { β1 } or alternatively: public void Update(X x) { β2 }
}
I i = new B();
X x = ...;

↯ Does the new non-virtual method B.Update(X) fulfill the I.Update(X) contract?
✓ Answer: Yes – in both cases the contract given by interface I is fulfilled in B with methods available in B
(declared or inherited) ~ filling (overwriting) entry in type B method table for interface I.

↯ So, does i.Update(x) call code β2 now?
✓ Answer: Yes – it will call the B.Update(X) method, as B.Update(X) fulfills I.Update(X) contract for B type ~
implementation β2 gets called.

✓ Observation: If B.Update(X) is a virtual method, CLR always uses dynamic dispatch to call it ~ it will look up
the virtual method implementation at runtime in VMT of the target instance type.

