
CHARLES UNIVERSITY IN PRAGUE

http://d3s.mff.cuni.cz

faculty of mathematics and physics

NPRG065: Programming
in Python
Lecture 8

Tomas Bures

Petr Hnetynka
{bures,hnetynka}@d3s.mff.cuni.cz

2

Visibility

No visibility modifiers like in Java, C++,…

everything is public

Attributes starting with _ should be considered as
private (better call them internal)

Name mangling – partial support for private
attributes

identifier __xxx (at least two leading underscores, at
most one trailing underscore) is textually replaced with
_classname__xxx

Examine and run
mangling.py

3

Interfaces and Polymorphism

Structural subtyping

aka “Duck typing”
“If it walks like a duck and quacks like a duck, it must be a duck.”

There is not language construct for an interface

This means that interfaces form an implicit contract that is
captured by comments and documentation

4

Interfaces and Polymorphism

class List:

def add(item): ...

def size(): ...

class Set:

def add(item): ...

def size(): ...

def add_to_collection(collection, item):

collection.add(item)

ls = List()

st = Set()

item = get_item()

add_to_collection(ls, item)

add_to_collection(st, item)

5

Note on Inheritance

In statically-typed languages, inheritance
combines two different features

Subclassing
Forming a class based on a previous class

The aim is to reuse code

Subtyping
A type may be used in places where supertype is expected

The aim is polymorphism

In Python, however, inheritance brings only
subclassing

Subtyping is handled at runtime based on method
lookup

6

Properties

Recommendation

directly access object variables

i.e., not to use getters and setters

Sometimes getter and/or setters are necessary

e.g., read-only values, computed values, changes in
subclasses,...

Solution => properties

property ~ variable with getter, setter and deleter

7

Properties

Not all of the getter, setter and deleter are necessary

can be None

class C:

def __init__(self):

self._x = None

def getx(self):

return self._x

def setx(self, value):

self._x = value

def delx(self):

del self._x

x = property(getx, setx, delx, "'x' property.")

8

Properties

Easier specification – via @property decorator

class C:

def __init__(self):

self._x = None

@property

def x(self):

"""'x' property."""

return self._x

@x.setter

def x(self, value):

self._x = value

@x.deleter

def x(self):

del self._x See
properties.py

9

staticmethod

Methods without self

similar static methods in Java and C++

methods logically belonging to a class but do not
access any object variables

class C:

@staticmethod

def show(msg):

print(msg)

See
static.py

10

Abstract Base Classes

Module abc

Support for “interfaces” and methods that must
be implemented in subclasses

import abc

class PluginBase(abc.ABC):

@abc.abstractmethod

def process(self, input):

pass

class ToUpperPlugin(PluginBase):

def process(self, input):

return input.upper()
Examine and run
abstract_base.py

11

Abstract Base Classes

collections.abc

special module for collection like classes

12

Enum

Module enum

enum ~ a class with several named constants

from enum import Enum

class Color(Enum):

RED = 1

GREEN = 2

BLUE = 3

a = Color.RED

if a is Color.RED:

print("is red)

for color in Color:

print(color)

Examine and run
enums.py

13The slides are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/

