NPRGO065: Programming
in Python
Lecture 8

http://d3s.mff.cuni.cz

Department of
Distributed and TomaS BUI‘ES
Dependable

Petr Hnetynka
{bures,hnetynka}@d3s.mff.cuni.cz

CHARLES UNIVERSITY IN PRAGUE

faculty of mathematics and physics

Visibility

* No visibility modifiers like in Java, C++,...
= everything is public

* Attributes starting with _ should be considered as
private (better call them internal)

°* Name mangling — partial support for private
attributes

= identifier _ xxx (at least two leading underscores, at

most one trailing underscore) is textually replaced with
_Cclassname xxx

Examine and run
mangling.py

2

Interfaces and Polymorphism

® Structural subtyping
= aka “Duck typing”

* “If it walks like a duck and quacks like a duck, it must be a duck.”

* There is not language construct for an interface

= This means that interfaces form an implicit contract that is
captured by comments and documentation

=<=jnterface==
Callection

add()
s5izel)

Interfaces and Polymorphism

class List: class Set:
def add(item): ... def add(item) :
def size(): ... def size():

def add to collection(collection, item):
collection.add (item)

1ls = List()
st = Set()

item = get item()
add to collection(ls, item)
add to collection(st, item)

Note on Inheritance

* |n statically-typed languages, inheritance
combines two different features
= Subclassing

®* Forming a class based on a previous class
®* The aim is to reuse code

= Subtyping
* A type may be used in places where supertype is expected
®* The aim is polymorphism
* In Python, however, inheritance brings only
subclassing

= Subtyping is handled at runtime based on method
lookup

Properties

® Recommendation

= directly access object variables
°j.e., not to use getters and setters

* Sometimes getter and/or setters are necessary

= e.g., read-only values, computed values, changes in
subclasses,...

* Solution => properties
= property ~ variable with getter, setter and deleter

class C:
def init (self):
self. x = None

getx (self) :
return self. x

setx (self, wvalue):
self. x = value

delx (self) :
del self. x

property (getx, setx, delx, "'x' property.")

* Not all of the getter, setter and deleter are necessary

= can be None

* Easier specification —via @property decorator

class C:
def init (self):
self. x = None

@property

def x(self) :
mwiiwy x) property . mwiwnw
return self. x

@x.setter
def x(self, wvalue):
self. x = value

@x.deleter
def x(self):
del self. x

staticmethod

* Methods without self

= similar static methods in Java and C++

= methods logically belonging to a class but do not
access any object variables

class C:
@staticmethod
def show (msqg) :

print (msqg)

See
static.py

Abstract Base Classes

* Module abc

® Support for “interfaces” and methods that must
be implemented in subclasses

import abc
class PluginBase (abc.ABC) :
@Qabc.abstractmethod

def process(self, input):
pass

class ToUpperPlugin (PluginBase) :
def process(self, input):
return input.upper ()

10

Abstract Base Classes

* collections.abc

= special module for collection like classes

ABC
Container
Hashable
Iterable
Tterator
Reversible
Generator
S5ized
Callable

Collection

Sequence

MutableSequence

ByteString

Inherits from

Iterable
Iterable

Iterator

Sized,
Iterable,
Container

Reversible,
Collection

Sequence

Sequence

Abstract
Methods

__contains

__hash__
__iter

__next_

__reversed

send, throw
len

__call

__contains__,

__iter |
__len_

__getitem

__len__

__getitem |
__setitem_ |
delitem
__len_ , insert

__getitem__,

Mixin Methods

__iter
close, iter |, next
__contains__ |, iter | reversed

1)

index, and count

Inherited Sequence methods and append,

reverse extend, pop, remove, and
__iadd

Inherited Sequence methods

11

Enum

* Module enum

" enum ~ a class with several named constants

from enum import Enum

class Color (Enum) :
RED =
GREEN = 2
BLUE = 3

a Color.RED

i1f a is Color.RED:
print ("is red)

for color in Color:
print (color)

12

The slides are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. 13

http://creativecommons.org/licenses/by-nc/4.0/

