
CHARLES UNIVERSITY IN PRAGUE

http://d3s.mff.cuni.cz

faculty of mathematics and physics

NPRG065: Programming
in Python
Lecture 9

Tomas Bures

Petr Hnetynka
{bures,hnetynka}@d3s.mff.cuni.cz

56

Class Design Example – SIS

“Student Information System”
Domain relationships

A course has description which is valid for several years
Name, e-credits
The way it is taught

e.g. 2 hours lecture + 2 hours labs once a week, 4 hours labs once per two weeks, 2 x 2 hours lecture +
2 hours labs once a week

Each year the course is scheduled to different slots and for different number of parallel
groups

Each course slot may be taught by a different teacher

A student registers to a course and which lecture and labs slots in the schedule he/she
will attend

Use-cases
List courses taught in a particular year
Allow student to register to a course
List students that are registered to the course but which have not selected slots they will
attend
Show student schedule
Show statistics per teacher (which courses, number of teaching hours, number of
students)

57

58

Python protocols

Protocol ~ structural interface
a collection of methods an object has to support to
implement something

Example – iteration protocol
for works with anything iterable

iterable ~ has the __iter__() method, which returns an
object supporting the iteration protocol, i.e., an object with
methods
__iter__() – returns itself

__next__() – returns the next item or raises the
StopIteration exception

for i in anything_iterable:

print(i)

59

Protocols

Many protocols

e.g. in
collections.abc
module

__amethod__() methods called “special”

https://docs.python.org/3/reference/datamodel.html#special-method-names

60

Special methods

__del__(self)

finalizer

called when the instance is about to be destroyed (by GC)

not guaranteed to be called
when the interpreter terminates

raised exception are ignored
only logged to sys.stderr

Module gc
interacting with GC

static methods only

gc.collect() – runs collections

gc.enable(), gc.disable(), gc.isenabled(),…

See
finalizer.py

61

Special methods

__repr__(self)

returns the “official” string representation of an object

should look like a valid Python expression that could be used
to recreate an object with the same value

called by the repr() built-in function

__str__(self)

returns the “informal” or nicely printable string
representation of an object

called by the built-in functions str(), format()
and print()

default implementation calls __repr__()

See
tostring.py

Special methods: Operators

Predefined set of operators with defined behavior and syntax.
Possibility to override behavior by providing custom
implementation of the matching special method in the class.
Except and, is, and or.
It is not possible to change the syntax or add new operators.
For arithmetic operators there are three types of special
methods:

“Normal” i.e.
object.__add__(self, other)
Self is left operand, other is right operand.

“Reverse” i.e.
object.__radd__(self, other)
Self is right operand, other is left operand. If defined takes precedence to
“normal”

“In-place” i.e.
object.__iadd__(self, other)
Used by += syntax. If possible modify self object in-place

Operators - arithmetic
Operator Method Reverse argument method

+ object.__add__(self, other) object.__radd__(self, other)

- object.__sub__(self, other) object.__rsub__(self, other)

* object.__mul__(self, other) object.__rmul__(self, other)

@ object.__matmul__(self, other) object.__rmatmul__(self, other)

/ object.__truediv__(self, other) object.__rtruediv__(self, other)

// object.__floordiv__(self, other) object.__rfloordiv__(self, other)

% object.__mod__(self, other) object.__rmod__(self, other)

** object.__pow__(self, other[, mod]) object.__rpow__(self, other)

<< object.__lshift__(self, other) object.__rlshift__(self, other)

>> object.__rshift__(self, other) object.__rrshift__(self, other)

& object.__and__(self, other) object.__rand__(self, other)

^ object.__xor__(self, other) object.__rxor__(self, other)

| object.__or__(self, other) object.__ror__(self, other)

- (unary) object.__neg__(self)

+ (unary) object.__pos__(self)

~ object.__invert__(self)

Operators – in-place arithmetic

Opera
tor

Method

+= object.__iadd__(self, other)

-= object.__isub__(self, other)

*= object.__imul__(self, other)

@= object.__imatmul__(self, other)

/= object.__itruediv__(self, other)

//= object.__ifloordiv__(self, other)

%= object.__imod__(self, other)

**= object.__ipow__(self, other[, mod])

<<= object.__ilshift__(self, other)

>>= object.__irshift__(self, other)

&= object.__iand__(self, other)

^= object.__ixor__(self, other)

|= object.__ior__(self, other)

Operators – comparison

Operator Method

< object.__lt__(self, other)

<= object.__le__(self, other)

== object.__eq__(self, other)

!= object.__ne__(self, other)

>= object.__ge__(self, other)

> object.__gt__(self, other)

Notes:
• negated __eq__ is used when __ne__ is not implemented
• __lt__ on the second argument is used if the first does not implement __gt__ and vice

versa similar for __le__ and __ge__

See
operators-*.py

66

Special methods

__hash__(self)

returns a hashcode of the object

int

called by the builtin function hash()

used in dict, set,…

recommended implementation – hash from tuple of fields

implement __hash__() only on immutable objects that have also
__eq__() and will be used as keys in dict and similar

__bool__(self)

conversion to bool value

e.g., for usage in conditions

def __hash__(self):

return hash((self.name, self.nick, self.color))

See
hashcode.py

67

Special methods

__call__(self, [arg1,…])

called when the instance is “called” as a function

if this method is defined, x(arg1, arg2, ...) is a shorthand for x.__call__(arg1,
arg2, ...)

with statement

a context manager – an object that defines the runtime context to be
established when executing a with statement

object.__enter__(self)

called at with start

with binds the method’s return value to the target specified in the as clause

object.__exit__(self, exc_type, exc_value, traceback)

called when with terminates

with open('workfile') as f:

// do something with read data

print(f.closed) // f is closed automatically

See
context-manager.py

68

Special methods: collections.abc

Iterable
__iter__(self) – we already know

Reversible
__reversed__(self)

returns iterator iterating in reversed order
called by reversed() builtin

Sized
__len__(self)

returns lens of the object (e.g., number of item in the continer)
called by len()
plus, an object that doesn’t define a __bool__() method and whose
__len__() method returns zero is considered to be false in a Boolean
context

Container
__contains__(self, item)

returns true if item is in self

69

Special methods: collections.abc

__getitem__(self, key)

called to implement evaluation of self[key]

__setitem__(self, key, value)

assignment to self[key]

__delitem__(self, key)

deletion of self[key]

__missing__(self, key)

called by __getitem__() to implement self[key] if key is missing

See
container.py

70The slides are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/

