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Descriptors

®* Descriptor ~ an object attribute with the methods
= get (self, instance, owner)
=  set_(self, instance, value)
= delete_ (self, instance)

= methods called when the attribute is accessed

® Comparedto getattr , etc.
= getattr_, etc. defined on the class with attribute
=  get ,etc. defined on the attribute’s class

See

descriptors.py




Instance attribute
lookup

class Class:

instance = Class()
instance.foobar

Figure from https://blog.ionelmc.ro/2015/02/09/understanding-python-metaclasses/
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new_ (cls|, ...])

the real “constructor” (create the object)
= init__ only initializes the object, it does not create it

a class method
creates a new instance of class cls

remaining arguments are those passed to the object constructor
expression

if __new__ () returns an instance of cls, then the new instance’s
__init__() will be invoked like __init__(self[, ...]), where self is the
new instance and the remaining arguments are the same as were
passedto new_ ()

allows subclasses of immutable types (like int, str, or tuple) to
customize instance creation

See

new_immutable.py




Metaclasses

Factories for creating classes
“Common” class definition

class Spam:

eggs = 'my eggs'

Procedural definition via metaclass

Spam = type('Spam', (object,), dict(eggs='my eggs'))

These two definitions are completely equivalent
= |n fact, Python transforms the first one into the second one

type is a metaclass



Metaclasses

®* Even in “common” definition, we can prescribe
the metaclass

class Spam:

eggs = 'my eggs'

= is equivalent to

class Spam(metaclass=type) :

eggs = 'my eggs'

® \We can define own metaclasses
as subclasses of type



Metaclasses

See

meta_examples.py
for more examples
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Metaclasses

* Metaclasses are used within the implementation of Abstract Base
Classes (see lecture 8)

import abc

class PluginBase (abc.ABC) :
@Qabc.abstractmethod
def process(self, input):

pass

class ToUpperPlugin (PluginBase) :
def process(self, input):
return input.upper ()

® ABC class has ABCMeta metaclass

* the following definition is equivalent

class PluginBase (metaclass=abc.ABCMeta) :
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