NPRGO065: Programming
in Python
Lecture 11

http://d3s.mff.cuni.cz

Department of
Distributed and TomaS BUI‘ES
Dependable

Petr Hnetynka
{bures,hnetynka}@d3s.mff.cuni.cz

CHARLES UNIVERSITY IN PRAGUE

faculty of mathematics and physics

Descriptors

®* Descriptor ~ an object attribute with the methods
= get (self, instance, owner)
= set_(self, instance, value)
= delete_ (self, instance)

= methods called when the attribute is accessed

® Comparedto getattr , etc.
= getattr_, etc. defined on the class with attribute
= get ,etc. defined on the attribute’s class

See

descriptors.py

Instance attribute
lookup

class Class:

instance = Class()
instance.foobar

Figure from https://blog.ionelmc.ro/2015/02/09/understanding-python-metaclasses/

call
Class: _getattribute (

'foobar')

T
default
implementation

'

‘foobar' in Class:__dict

/

yes

¥

Class:__dict__['foobar'] has both
get _and__set

S -
-l ™

return . .
Class: dict__['foobar']. get_ (foobar

instance, Class)

instance: _dict__

in

o
Vgl

return
instance: _dict__['foobar']

'foobar' in Class: _dict__

no,

N

Class: _dict__['foobar']

call

has __get Class:__getattr__('foobar')
/ \ ;
- default
/y no\ implementation
return

return

Class: dict ['foobar']. get (Class: dict [

instance, Class)

raise

'foobar'] AttributeError

https://blog.ionelmc.ro/2015/02/09/understanding-python-metaclasses/

new_ (cls|, ...])

the real “constructor” (create the object)
= init__ only initializes the object, it does not create it

a class method
creates a new instance of class cls

remaining arguments are those passed to the object constructor
expression

if __new__ () returns an instance of cls, then the new instance’s
__init__() will be invoked like __init__(self[, ...]), where self is the
new instance and the remaining arguments are the same as were
passedto new_ ()

allows subclasses of immutable types (like int, str, or tuple) to
customize instance creation

See

new_immutable.py

Metaclasses

Factories for creating classes
“Common” class definition

class Spam:

eggs = 'my eggs'

Procedural definition via metaclass

Spam = type('Spam', (object,), dict(eggs='my eggs'))

These two definitions are completely equivalent
= |n fact, Python transforms the first one into the second one

type is a metaclass

Metaclasses

®* Even in “common” definition, we can prescribe
the metaclass

class Spam:

eggs = 'my eggs'

= is equivalent to

class Spam(metaclass=type) :

eggs = 'my eggs'

® \We can define own metaclasses
as subclasses of type

Metaclasses

See

meta_examples.py
for more examples

O —— Class attribute

T
default
implementation

; lookup

'foobar' in Metaclass: _dict__

yg/ class Class:

' L

Metaclass: _dict__['foobar'] has
both _get _and __set

A
i ™

return
Metaclass: _dict__['foobar']. get (‘foobar' in Class: dict _

lass, Metaclass)

yes

Class.foobar

/

Class:__dict__['foobar']
has __get

A p— o
/’

'foobar' in
Metaclass: dict__

o N
‘< ™

Metaclass: _dict__['foobar'] call
has __get Metaclass: getattr_ ('foobar')

/ \
a6 default
/Y 0\ implementation

fewm return raise

Metaclass: _dict_ ['foobar']. get_ (5 ;
Class, Metaclass) Metaclass: dict_ ['foobar'] AttributeError

—~

return o
Class: _dic':o?e[' fcof::sr) 1.—get_(| | class: dict_ ['foobar']

Figure from https://blog.ionelmc.ro/2015/02/09/understanding-python-metaclasses

https://blog.ionelmc.ro/2015/02/09/understanding-python-metaclasses/

Metaclasses

* Metaclasses are used within the implementation of Abstract Base
Classes (see lecture 8)

import abc

class PluginBase (abc.ABC) :
@Qabc.abstractmethod
def process(self, input):

pass

class ToUpperPlugin (PluginBase) :
def process(self, input):
return input.upper ()

® ABC class has ABCMeta metaclass

* the following definition is equivalent

class PluginBase (metaclass=abc.ABCMeta) :

The slides are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. 10

http://creativecommons.org/licenses/by-nc/4.0/

