
CHARLES UNIVERSITY IN PRAGUE

http://d3s.mff.cuni.cz

faculty of mathematics and physics

NPRG065: Programming
in Python
Lecture 12

Tomas Bures

Petr Hnetynka
{bures,hnetynka}@d3s.mff.cuni.cz

2

Coroutines

Asynchronous functions
typically for I/O or long computations
asynchronous = not waiting for a result
in Python – coroutines

Coroutine function – function defined via async
def or decorated with @asyncio.coroutine
async def preferred

Coroutine object – obtained by calling a coroutine
function
Calling a coroutine does not start its code running

3

Coroutines, tasks, futures

Task – associates coroutine with an event loop
(i.e. thread of execution)

Itself is an awaitable object

Task is also a Future
Future provides callback interface to register for results

add_done_callback, remove_done_callback

cancelled, done, result

Future acts as a bridge between coroutines and
callback-based internal methods (e.g. for manipulating
streams)

4

Coroutines

Things a coroutine can do:

result = await future or result = yield
from future

suspends the coroutine until the future is done, then returns
the future’s result

result = await coroutine or result =
yield from coroutine

wait for another coroutine to produce a result

return expression

raise exception

5

Coroutines

Calling a coroutine – returns a coroutine object
To start a coroutine

call await coroutine or yield from coroutine from another
coroutine, or
schedule its execution via the even loop
asyncio.get_event_loop()

Event loop and related methods (the mostly used ones)
asyncio.ensure_task(coroutine)

schedules the execution of a coroutine object, wraps it in a future

loop.run_until_complete(coroutine)

runs until the task is done
if the argument is a coroutine object, it is wrapped by ensure_task()

Future – encapsulates a call ~ a place for result
cancel() -> bool

canceled() -> bool

done() -> bool

result()

exception()

Examine and run
01_co_hello.py

02_co_print_time.py

6

Coroutines

import asyncio

async def compute(x, y):

print("Compute %s + %s ..." % (x, y))

await asyncio.sleep(1.0)

return x + y

async def print_sum(x, y):

result = await compute(x, y)

print("%s + %s = %s" % (x, y, result))

loop = asyncio.get_event_loop()

loop.run_until_complete(print_sum(1, 2))

loop.close()

Code in
03_co_sum.py

7

Coroutines

If coroutine waits for another coroutine, it is suspended -
> other coroutine can run

-> synchronous waiting in coroutine blocks other
coroutines

-> for async I/O operations – we need async aware
functions

e.g. urllib.request module is not async aware
-> use aiohttp (but it is not in the std library)

async with and async for

like regular with and for but can yield

Compare
04a_co_sleep.py and

04b_co_sleep.py

Compare
05a_co_down.py and

05b_co_down.py

8

Coroutines under the Hood

Coroutine is an awaitable object
Works in a similar way to a generator

Coroutine
Started by __await__

Continuation controlled by methods “send”, “throw”,
“close”

Generator
Started by __next__

Continuation controlled by methods “send”, “throw”,
“close”

9The slides are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/

