NPRGO065: Programming
in Python
Lecture 13

http://d3s.mff.cuni.cz

Department of
Distributed and Tomas Bures
Dependable

Petr Hnetynka
{bures,hnetynka}@d3s.mff.cuni.cz

CHARLES UNIVERSITY IN PRAGUE

faculty of mathematics and physics

Unit testing

Unit testing

® unit testing
= testing “small” units of functionality
= 3 unit — independent on other ones

= tests are separated
° creating helper objects for tests

= context
= typically in OO languages

® unit ~ method

= ideally — unit tests for all units in a program
* typically in OO languages

= for all public methods

Unit testing in Python

®* Modules in std. library
= doctest
" unittest

doctest

® Placing testing code in pydoc comments

def echo(value):

wiuwiw

Documentation here

>>> echo (0)
0]

A AN

return value

® Executing tests
= python -m doctest -v example.py
® Or

= placing doctest.testmod() to “main” and executing the
module with the argument -v

unittest

* Tests in a special class

import unittest
class TestStringMethods (unittest.TestCase):

def test upper (self):
self . assertEqual ('foo' .upper(), 'FOO')

def test isupper (self):
self. assertTrue ('FOO' .isupper())
self . assertFalse('Foo'.isupper())

if name
unittest.main()

unittest

Method
assertEqual(a, b)
assertNotEqual(a, b)
assertTrue(x)
assertFalse(x)
assertIs(a, b)
assertIshot(a, b)
assertIshone(x)
assertIsNotNone(x)
assertIn(a, b)
asserthotIn(a, b)
assertIsInstance(a, b)

assertNotIsInstance(a, b)

Method

assertRaises(exc, fun,

assertRaisesRegex(exc,
*+kwds)

assertWarns(warn, fun,

assertWarnsRegex(warn,
**kwds)

Checks that
a=>b
al'=»b

bool(x) is True
bool(x) is False
aish

a is not b

X is None

X is not None
ainb

a not in b
isinstance(a, b)

not isinstance(a, b)

assertLogs(logger, level)

Method
assertAlmostEqual{a, b)
assertNotAlmostEqual(a, b)
assertGreater(a, b)
assertGreaterEqualia, b)
assertless(a, b)
assertlessEqualia, b)
assertRegex(s, r)
assertNotRegex(s, r)

assertCountEqual(a, b)

Checks that
*args, **kwds) fun({*args, **kwds) raises exc
r, fun, *args, fun({*args, **kwds) raises exc

and the message matches regex r

*args, **kwds) fun(*args, **kwds) raises wam

r, fun, *args, fun({*args, **kwds) raises wam

and the message maiches regex r

The with block logs on loggerwith
minimum level

Checks that
round(a-b, 7) = 0@
round(a-b, 7) !'= 0
a>bh

a>bh

a<bh

a<=bh

r.search(s)

not r.search(s)

a and b have the same elements in the
same number, regardless of their order.

import unittest

class WidgetTe ase (unittest.TestCase) :
def setUp(self):
self .widget = Widget ('The widget')

test default widget size(self):
self.assertEqual (self.widget.size(), (50,50),
'incorrect default size')

test widget resize (self):

self . widget.resize (100,150)

self . assertEqual (self.widget.size(),
(100,150) , 'wrong size after resize')

tearDown (self) :
self.widget.dispose ()

unittest

* Methods called before/after each all tests in a
particular class

@Qclassmethod
def setUpClass(cls):

@Qclassmethod
def tearDownClass (cls):

® Tests execution
= python -m unittest test_modulel test module2

Packing and distributing code

10

Installing packages using PIP

°* PIP —a tool that enables automated installation of
packages from a large repository

= packages from pypi.org
* As of Python 3.4 PIP is part of the default Python
installation
* Usage:
= python -m pip install SomePackage
= python -m pip install —user SomePackage
= python -m pip install SomePackage==1.0.4
= python -m pip install --upgrade SomePackage

® Problems:

= May interfere with system package managers on Posix systems

* install package just for single user using “--user” or use virtual environment
= described later

= Packages with native content need to be build from source

Installing packages from source

m

* By convention installable Python sources have
setup.py installation script in their root directory

* setup.py should ensure installation of the
packages and modules included in the codebase
as intended by author.

°* |t can be invoked as this:
= python setup.py instal

= python setup.py install —user

* if possible, prefer PIP and pypi.org

Virtual Environment

® venv

= 3 tool for creating virtual Python environments

python3 -m venv DIRECTORY

= sets up virtual environment in the DIRECTORY
®* new packages are installed to the DIRECTORY

source /path/to/DIRECTORY/bin/activate

= gctivates the environment
® virtualenv

= similar, just another package for the same

python3 -m virtualenv DIRECTORY

13

Managing Dependencies

® pipenv
= combination of PIP and virtualenv

* creates virtualenv and install dependencies there

* |ist of dependencies stored in a file within the
project

cd myproject
pipenv install <package>

pipenv shell

Packaging Applications

* setuptools

* Tool for packaging python applications
* ...and describing requirements

® Driven by setup.py

Writing setup.py

° In theory any arbitrary code can be in setup.py
= it is a normal script
= but typically contains only the package description

* |In fact all the installation code does not needs to
be written again

= The setuptools package contains the necessary
functions

= Particularly the setup function is used to configure
what to install

= For most projects a call to the setup is everything that
is needed -

myhello directory
and setup.py there

What does an installed package look like

* Packages are installed as python eggs

= each installed package has a directory or an egg
archive containing its files:
® python source code
® any other resource necessary for the package to work properly
* precompiled .pyc files in the __pycache _ subdirectory

= each package also has its own text file describing
package metadata

® contains name, version, summary, url, authors, licence,
dependencies, ...

Where are the installed packages

® Python looks for packages to import on multiple
places.

®* The lookup is controlled by the Python Path variable

® By default it contains:
= the directory where the script is located
= python installation package directory
= other system Python packages (site-packages directory)
= user local package directory
= content of PYTHONPATH environment variable

® Path can be accessed and modified at runtime
" import sys
= print(sys.path)
= sys.path.append(“some path”)

Std library overview
(Important modules)

19

Logging

s ® s © 5. ® s
e import logging
* Similar to any other logging framework

® 5 levels
= DEBUG, INFO, WARNING, ERROR, CRITICAL

* Loggers

= hierarchical names

* Logging configuration — handlers, formatters
" in code
= external file See
°* several formats

20

Low level OS functions

e import os

® Operating system API

See

os/o0s.py — Miscellaneous operating system API
os/os.file.py — File operating system API

General — different file access APls

°* There are several ways how to access files in Python
= Build-in open()
® This is a generic way how to open files.

® Use this if there are no special requirements to use os API.
® Returns a file object with read, write, ... methods.

= pathlib Path.open()
® Behaves like open() but provides nice path abstraction.
® Returns the same file object.

= os.open()
® Provides low level file API, maps to native C functions.
® Returns native file descriptor as used by the underlying operating system
(an integer).
® os contains methods for low level file access
= File is passed in form of a file descriptor

= Some methods also accept file name if possible
® For instance os.lseek does not make sense with just file name

® Use when necessary

os — low level file access API

®* There used to be 2 versions of each function
= One for working with path (like os.stat)
= Another one for working with file descriptors (like os.fstat)

= Since Python 3.3 the os.stat and similar methods naturally working
with paths also take fd or dir_fd argument, thus the fd only versions
prefixed with f are redundant.

®* Everything does not work everywhere
= Quite big part of the APl is Unix only.
= Sometimes only part of the functionality is available.
= Sometimes the result of the operation is platform dependent.

= |t is possible to ask whenever particular function supports something
by checking the function being present in os.supports._...

°® os.supports_dir_fd

° os.supports_effective_ids

°® os.supports_fd

°* os.supports_follow_symlinks

The os file APl is similar to C file API

Windows, Unix, usually Mac

0s.open os.mkfifo os.chown
os.close os.readlink os.get_blocking
os.dup 0s.remove os.lockf

0s.pipe os.removedirs os.possix_fallocate
os.read 0s.rename 0s.possix_fadvise
os.sendfile os.replace os.set_blocking
os.write os.rmdir os.chroot
0S.access os.scandir 0S.sync

os.chdir os.stat

os.chflags os.stat_float_times

os.chmod os.symlink

os.getcwd os.truncate

os.link os.unlink

os.listdir os.utime

os.lIstat os.walk

File path access via pathlib

s © 5.© 5. ©
e import pathlib
* Working with filesystem paths

Argument parsing

e import argparse

® Parsing command-line arguments

See
arguments.py

Regular expressions

s © 2 © 5. © s
e import re

* Regular expression support

See
regexp.py

System

s © 2 © 5. © s
e import sys

* System-specific parameters and functions

See
system.py

Shell utils

s © 2.© 5 © s
e import shutil
* High-level file API

XML

e import xml

® Parsing XML documents

See
xml/xmltree.py

CSv

e import csv

®* Reading and writing CSV files

JSON

e import json

®* Reading and writing json formatted data

The slides are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. 33

http://creativecommons.org/licenses/by-nc/4.0/

