NPRGO065: Programming
in Python
Lecture 3

http://d3s.mff.cuni.cz

Department of
Distributed and TomaS BUI‘ES
Dependable

Petr Hnetynka
{bures,hnetynka}@d3s.mff.cuni.cz

CHARLES UNIVERSITY IN PRAGUE

faculty of mathematics and physics

Lists

—XF

® Dynamic arrays

" mutable

squares = [1, 4, 9, 12, 25]
squares|[3] = 16

print (squares) ¥ -> [1, 4, 9, 16, 25]

* Indexing and slicing like with strings

squares[-1] # -> 25
squares[-3:] ¥ -> [9, 16, 25]

= warning: slicing returns a new list

squares|[:] # -> [1, 4, 9, 16, 25]

a copy of the whole list

Lists

—XF

® Concatenation via +
" returns a new list

squares + [36, 49, 64, 81, 100] ¥ ->

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

* append() method

= adding at the end of the list
* modifying the list

squares . append (36)

print (squares) ¥ -> [1, 4, 9, 16, 25, 36]

Lists

—XF

* Assignment to slices

1etters — ['a" 'b" 'c" 'd', 'e', 'f', 'g']
letters[2:5] = ['C', 'D', 'E']
_> ['a|, 'b', 'C', 'D', 'E', 'f" 'g']

letters[2:5] = [] # > ['a', 'bD', '"£', 'g']
letters[:] = [] # -> [1

* Length

len(letters) # -> O

Lists

—XF

® Listsin lists

[|a|, 'b'] 'cl]
[1, 2, 3]

[a, n]
Print(x) # -> [['a'l 'b'r 'C']I [11 2/ 3]]
print (x[0][1]) ¥ -> 'b'

Lists

e del statement

a=[-1, 1, 66.25, 333, 333, 1234.5]
del a[O0]
print(a) # -> [1, 66.25, 333, 333, 1234.5]

del a[2:4]

print(a) # -> [1, 66.25, 1234.5]
del a[:]

print(a) # -> []

= del can do more

del a

print(a) # -> error

Tuples

* Similar to lists
®* But immutable
* Literals in round parentheses

alist =
atuple

alist[O0]
atuple[0]

Operations over sequences

®* Sequence = list, tuple, string, ... and many more

Operation

X in s

X not in s
s+t

s *norn * s
s[i]

s[i:j]
s[i:j:k]
len(s)

min(s)

max(s)

Result

True if an item of sis equal to x, else False
False ifanitem of s is equal to x, else True
the concatenation of sand t

equivalent to adding s to itself n times

ith item of s, origin 0

slice of sfromitoj

slice of s from j to j with step k

length of s

smallestitem of 5

largestitem of s

See

sequences.py

TISTITE T T

Comparing sequences

* Lexicographically

= following comparisons are true

(1, 2, 3) (1, 2, 4)
[1, 2, 3] [1, 2, 4]
'ABC' < 'C' < 'Pascal' 'Python'’
(1, 2, 3, 4) (1, 2, 4)

) (1, 2, -1)
(1, 2, 3) (1.0, 2.0, 3.0)
(1, 2, ('aa', 'ab')) (1, 2, ('abec', 'a'), 4)

Conditions in general

—XF

® Non-zero number -> true

* Non-empty sequence -> true

a=[1, 2, 3]
print('yes' if a else 'no') # -> yes

[]

print('yes' if a else 'no') # -> no

e and and or — short-circuit evaluation

®* no assignment inside expressions (like in C, Java,...)

if (a = get value()) == 0: # -> syntax error

print ('zero')

10

set, dict

set — unordered collection of distinct objects
= |iterals— {'one', 'two'}

frozenset — immutable set

dict — associative array (hashtable)

= literals— {'one': 1, 'two': 2, 'three': 3}

See
sets_and_dicts.py

11

* Indexing by anything

adict = {'one': 1, 'two': 2, 'three': 3}
print (adict['one']) # > 1
adict['four'] = 4

print (adict)
-> {'one': 1, 'two': 2, 'three': 3, 'four': 4}

° |terating

for k, v in adict.items() :
print(k, v)

for k in adict.keys():
print(k, adictl[k])

12

Comprehensions

® 3 concise way to create lists, sets, dicts
= this works

squares = []

for x in range(10):
squares.append (x**2)

= but comprehension is better
® and shorter, more readable, ..., more Pythonic

squares = [x**2 for x in range(10)]

* |ist comprehension
brackets containing an expression followed by a
for clause, then zero or more for or i f clauses

13

Comprehensions

[(x, y) for x in [1,2,3] for y in [3,1,4] if x !'= y]

-> [(1, 3), (1, 4, (2, 3), (2, 1), (2, 4),
(3, 1), (3, 4]

® Can be nested

a matrix
m=[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]

and a transposed matrix
tm = [[row[i] for row in m] for i in range(4)])

14

Comprehensions

—

°* set comprehensions

= [ike for lists but in curly braces

word = 'Hello'
letters = {¢ for c in word}

another example
a = {x for x in 'abracadabra' if x not in 'abc'}

* dict comprehensions

= also in curly braces but we need to specify both the key and value
® separated by :

word = 'Hello'

letters = {c: c.swapcase() for ¢ in word}
_> {'H': |h|, lel: IEl’ lll: 'L', VOV: lol}

15

More collection types

e bytes

= immutable sequences of single bytes

b'bytes literals are like strings but only with ASCII

chars'
b'escape sequences can be used too\x00'

e bytearray

= mutable counterpart to bytes

See

strings_vs_bytes.py

16

More collection types

namedtuple

deque

ChainMap

Counter

OrderedDict

defaultdict

heapq

a factory function for creating tuple subclasses with
named fields

a list-like container with fast appends and pops on either
end

a dict-like class for creating a single view of multiple
mappings

a dict subclass for counting hashable objects

a dict subclass that remembers the order entries were
added

a dict subclass that calls a factory function to supply
missing values

an implementation of the heap queue algorithm

See

other_collections.py

17

Naming conventions

s © 2.© 5 © s
* PEP 8, PEP 423

PEP = Python

Enhancement Proposals
® (Classes — camel case

= MyBeautifulClass
®* Functions, methods, variables — snake case
= my beautiful function, local variable
* “Constants” — capitalized snake case
= MAX VALUE
* Packages, modules
= |ower case, underscore can be used (discouraged for packages)
" no conventions as in Java (i.e., like reversed internet name)

= “pick memorable, meaningful names that aren’t already used on PyPI”

= The Zen of Python says "Flat is better than nested".
® two levels is almost always enough

* The Zen of Python
= import this Try import this inthe

interactive shell

18

Special variables/methods of objects

°* Many special variables/methods
= not all objects have all of them

®* Naming schema

= surrounded by double underscores
4 name of the special variable or method

° name

= name of the object

® QOthers later

import sys

sys. name

19

The slides are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. 20

http://creativecommons.org/licenses/by-nc/4.0/

