NPRGO065: Programming
in Python
Lecture 7

http://d3s.mff.cuni.cz

Department of
Distributed and TomaS BUI‘ES
Dependable

Petr Hnetynka
{bures,hnetynka}@d3s.mff.cuni.cz

CHARLES UNIVERSITY IN PRAGUE

faculty of mathematics and physics

Functions
(continuation from lect. 5)

Type hints

* Function parameters — no explicit type defined
= it's obvious as Python is dynamically typed

°* But they can be added via type hints
= since python 3.5
= only for documentation purposes!
= still no type checking at runtime!

def greeting(name: str) -> str:
return 'Hello ' + name

Lambdas & Functional programming

®* Anonymous functions
= adder = lambda x, y: x + y

= print val = lambda name, value: name + '=' + str(value)

® Lambda body ~ single expression
= rather limited

® Python authors do not like lambdas

= but it is not a big deal; regular functions are first class objects, references to them
can be passed

Lambdas & Functional programming

® Functional programming (FP)
= declarative programming paradigm

= computation as the evaluation of mathematical
functions

= avoids changing-state and mutable data

° Python builtin functions for FP
= map and filter
= enumerate, sorted, any, all, zip

" module functools i
°*and operator functional.py

Generators

* When you need elements of a sequence but not the complete
sequence

= similar to an iterator Examine and run
generators.py

®* Generator functions
= 3 function with yield instead of return
= vyield —allows functions to suspend and resume their state between each call

def get squares gen(n):
for x in range(n):

yield x ** 2

®* (Generator expressions
= similar to list comprehensions, but

= return an object that produces results one by one
* instead of directly producing a list

(k**2 for k in range(10))
6

Back to core types

Int

® Supports “big-size” integers See
. nums.py
® Internal representation

= till sys.maxsize —regularint
= over sys.maxsize —a sequence of digits

import sys
import math

math.log(sys.maxsize, 2)
prints out size of "small" integers in bits

e intisaclass

= integers are objects (instances of the int class)
* classes will start next lecture

= js not computing inefficient? (i.e., creating too many
objects)

= 3 pool for the commonly used numbers (-5 to 256)

float

* floats are inherently imprecise

= internally represented as base 2 fractions
* “human floats” are base 10 fractions

print (0.1 + 0.1 + 0.1 == 0.3) # -> False

print(1/10 + 1/10 + 1/10 == 3/10) # -> False

* Decimal and Fraction types

" exact representation

® but slower computations

See

nums.py

The slides are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. 10

http://creativecommons.org/licenses/by-nc/4.0/

