
CHARLES UNIVERSITY IN PRAGUE

http://d3s.mff.cuni.cz

faculty of mathematics and physics

NPRG065: Programming
in Python
Lecture 8

Tomas Bures

Petr Hnetynka
{bures,hnetynka}@d3s.mff.cuni.cz

2

Object-oriented programing – Basic principles

A system consists of a set of objects that are send messages to
each other.

The reception of a message triggers an operation in the receiving
object.

An object is an individual entity
with a unique identity.

A class describes a set of objects
with common characteristics:

Attributes
(e.g., name, age of a person)

Relationships to other objects
(e.g. a person is married to another
person)

Operations that can be executed
(e.g. printInfo)

3

Object-oriented programing – Basic principles

The current attribute values (and relationships) at a time
determines the object's state

The current state of all existing objects at a time (and their
relationships to other objects) determine the system's state

Classes can be specialized –
e.g., an employee is a person

Fundamental OO concepts
Encapsulation

Hides particular details

Abstraction (inheritance)

An “employee” can be regarded as
a “person”

Polymorphism

Behavior dependent on a particular
instance

4

SalesLineItem

quantity : Integer

getSubtotal()

ProductCatalog

...

getProductDesc(...)

ProductDescription

description : Text

price : Money

itemID: ItemID

...

Store

address : Address

name : Text

addCompleteSale(...)

Payment

amount : Money

...

1..*

1..*

Register

...

endSale()

enterItem(...)

makeNewSale()

makePayment(...)

Sale

isComplete : Boolean

time : DateTime

becomeComplete()

makeLineItem(...)

makePayment(...)

getTotal()

1

1

1

1

1

1

*

catalog

catalog

register

currentSale

descriptions

{Map}

lineItems

{ordered}

payment

completedSales

{ordered}

description

Figure from slides of C. Larman: http://www.craiglarman.com/wiki/index.php?title=Educator_Resources

5

Cash

Payment

Credit

Payment

Check

Payment

Payment

amount : Money

Check

Identifies-credit-with Paid-with
*

each payment subclass is

handled differently

additional associations

superclass justified by common

attributes and associations

Sale
Pays-for

CreditCard

1

1

1 1

Figure from slides of C. Larman: http://www.craiglarman.com/wiki/index.php?title=Educator_Resources

6

Credit

Authorization

Service

Check

Authorization

Service

Check

Payment

AuthorizationService

address

name

phoneNumber

additional associations

superclass justified by

common attributes and

associations

Store
Authorizes-payments-of *

Authorizes

Credit

Payment

Authorizes

**

*

1 1

Figure from slides of C. Larman: http://www.craiglarman.com/wiki/index.php?title=Educator_Resources

7

Classes and objects

Class ~ (in broad view) a template for creating
objects

Object ~ an instance of a class

In Python
class defined as a set of statements

Note – in Python, a class definition is also an object
will be later in more details

class ClassName:

<statement-1>

.

.

<statement-N>

8

Basics of classes

class Dog:

kind = 'canine'

def __init__(self, name):

self.name = name

def bark(self):

print(f'{self.name} says: Woof woof')

print(Dog.kind) # -> canine

d = Dog('Fido') # instantiating new objects

e = Dog('Buddy')

print(d.kind) # -> canine

print(e.kind) # -> canine

print(d.name) # -> Fido

print(e.name) # -> Buddy

d.bark() # Fido says: Woof woof

e.bark() # Buddy says: Woof woof

Class variable (similar to static field in Java)

Initialization method (like a constructor)

Explicit reference to objects (like this in Java)Explicit reference to objects (like this in Java)

Examine and run
basics_classes.py

self is set automatically

No “new” for instantiating

9

Basics of classes

Method calls

Calling methods like functions

Class variables – shared among all instances

Object variables defined in __init__()
but can be defined in any method

or even outside of any method

d = Dog('Fido')

Dog.bark(d) # equivalent to d.bark()

dbark = d.bark

dbark()

Examine and run
methods_variables.py

10

Basics of classes

Functions can be “transformed” to methods

functions and methods are objects too
will be later in more detail

def f1(self, x, y):

return x + y

class C:

f = f1

def g(self):

return 'hello world'

h = g

now, all f, g, and h are methods

Examine and run
functions_methods.py

11

Inheritance

Methods can be overridden
effectively, all the methods are virtual (like in Java)
calling a method from the parent in the overridden method
BaseClassName.methodname(self, arguments)

or (and better)
super().methodname(arguments)

Builtin functions
isinstance(obj, clazz)

issubclass(clazz, parent_class)

class DerivedClassName(BaseClassName):

<statement-1>

.

.

.

<statement-N>

12

Multiple inheritance

Searching a method/variable in parents

generally depth-first, left-to-right

class DerivedClassName(Base1, Base2, Base3):

<statement-1>

.

.

.

<statement-N> Examine and run
multiple_inheritance_basics.py

Not completely true …
details will follow

13

Inheritance

All classes inherit (directly or indirectly) from
object

Good practice (especially with multiple inheritance)
Always call inherited __init__() method

all of them

super().__init__()

Examine and run
multiple_inheritance_bad.py

And
multiple_inheritance_ok.py

14

Linearization

Searching a method/variable in parents

uses C3-linearization (aka Method Resolution Order – MRO)

ordering of ancestors such that:
ancestor never comes before a child (local precedence order)

an ancestor is not visited twice

within those rule it builds the
MRO depth-first, left-to-right

Examine and run
linearization.py

15The slides are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/

