NPRGO065: Programming
in Python
Lecture 9

http://d3s.mff.cuni.cz

Department of
Distributed and TomaS BUI‘ES
Dependable

Petr Hnetynka
{bures,hnetynka}@d3s.mff.cuni.cz

CHARLES UNIVERSITY IN PRAGUE

faculty of mathematics and physics

Visibility

* No visibility modifiers like in Java, C++,...
= everything is public

* Attributes starting with _ should be considered as
private (better call them internal)

°* Name mangling — partial support for private
attributes

= identifier _ xxx (at least two leading underscores, at

most one trailing underscore) is textually replaced with
_Cclassname xxx

Examine and run
mangling.py

2

Interfaces and Polymorphism

® Structural subtyping
= aka “Duck typing”

* “If it walks like a duck and quacks like a duck, it must be a duck.”

* There is not language construct for an interface

= This means that interfaces form an implicit contract that is
captured by comments and documentation

=<=jnterface==
Callection

add()
s5izel)

Interfaces and Polymorphism

class List: class Set:
def add(item): ... def add(item) :
def size(): ... def size():

def add to collection(collection, item):
collection.add (item)

1ls = List()
st = Set()

item = get item()
add to collection(ls, item)
add to collection(st, item)

Note on Inheritance

* |n statically-typed languages, inheritance
combines two different features
= Subclassing

®* Forming a class based on a previous class
®* The aim is to reuse code

= Subtyping
* A type may be used in places where supertype is expected
®* The aim is polymorphism
* In Python, however, inheritance brings only
subclassing

= Subtyping is handled at runtime based on method
lookup

Properties

® Recommendation

= directly access object variables
°j.e., not to use getters and setters

* Sometimes getter and/or setters are necessary

= e.g., read-only values, computed values, changes in
subclasses,...

* Solution => properties
= property ~ variable with getter, setter and deleter

class C:
def init (self):
self. x = None

getx (self) :
return self. x

setx (self, wvalue):
self. x = value

delx (self) :
del self. x

property (getx, setx, delx, "'x' property.")

* Not all of the getter, setter and deleter are necessary

= can be None

* Easier specification —via @property decorator

class C:
def init (self):
self. x = None

@property

def x(self) :
mwiiwy x) property . mwiwnw
return self. x

@x.setter
def x(self, wvalue):
self. x = value

@x.deleter
def x(self):
del self. x

staticmethod

* Methods without self

= similar static methods in Java and C++

= methods logically belonging to a class but do not
access any object variables

class C:
@staticmethod
def show (msqg) :

print (msqg)

See
static.py

Abstract Base Classes

* Module abc

® Support for “interfaces” and methods that must
be implemented in subclasses

import abc
class PluginBase (abc.ABC) :
@Qabc.abstractmethod

def process(self, input):
pass

class ToUpperPlugin (PluginBase) :
def process(self, input):
return input.upper ()

10

Abstract Base Classes

* collections.abc
= special module for collection like classes

Abstract
ABC Inherits from Methods Mixin Methods
Container __contains__
Hashable __hash__
Iterable __iter
Iterator Iterable __next__ __diter _
Reversible Iterable __reversed__
Generator Iterator send, throw close, iter_, next
Sized _len__
Callable __call
Collection Sized, __contains__
Iterable, __iter
Container _len__
Seguence Reversible, __getitem_ | __contains__, iter |, reversed
Collection _len__ index, and count
MutableSequence Sequence _getitem_ | Inherited Sequence methods and append,
__setitem__, reverse, extend, pop, remove, and
__delitem__, __dadd__
__len__, insert
ByteString Sequence __getitem__, Inherited Sequence methods
_len__
Set Collection __contains__ ~le |, 1t |, eg , ne_ , gt
__iter _ge | _and__, __or__, __sub__,
__len__ __xor__, and isdisjoint
MutableSet Set ___contains__, Inherited set methods and clear, pop,
__iter remove, _dor__ . __dand__, _ixor__ and
__len__, add, __disub__
discard

11

Enum

* Module enum

" enum ~ a class with several named constants

from enum import Enum

class Color (Enum) :
RED =
GREEN = 2
BLUE = 3

a Color.RED

i1f a is Color.RED:
print ("is red)

for color in Color:
print (color)

12

The slides are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. 13

http://creativecommons.org/licenses/by-nc/4.0/

