
Getting Started with Data Science

Using Python

These slides are based on:

https://www.slideshare.net/MSDEVMTL/data-science-presentation-94481624

By Andrei Lyskov

https://www.slideshare.net/MSDEVMTL/data-science-presentation-94481624

What is Data Science?

What is Data Science?

Related to Data Science

Information Retrieval:
• The key goal of an IR system is to retrieve all the items that are relevant to a user

query, while retrieving as few nonrelevant items as possible
• Query-document similarity. What features are relevant? How to query?
Machine learning
• Algorithms that learn patterns in the data
• Under the hood of most data science approaches
Data mining
• Data Mining is about finding the trends in a data set (mostly for human post-

processing).
• Data Science encapsulate data mining, the distinction between DM and ML is a bit

fuzzy (mostly in how are the found patterns utilized)

Data Science Steps

● Gather data

● Pre-processing

● Exploration phase

● Model building

● Model validation

● Model deployment

Scope of the course

Data Science Steps

● Data Gathering (beyond scope of this course) [numpy, Pandas]

Not too much problem at the classes, but extremely important in reality

(What data do I actually want? Can I have it? How to obtain it?)

3rd party data, no unique identifier, missing data, approximate joins, updates…

Wikidata, DBPedia, Linked Open Data

● Data Preparation / pre-processing (this is where the magic is) [scikit-learn (numpy, Pandas)]

Data cleaning, inputs for missing values, features normalization, outliers detection

Features augumentation / selection / construction / reduction

- Transformers (fit -> transform)
- https://scikit-learn.org/stable/modules/impute.html (deal with missing values)

- https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Normalizer.html (features/objects => axis=1/0)

- https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html (too many correlated features)

- https://scikit-learn.org/stable/modules/feature_extraction.html (transform feature space, e.g., numeric -> Binary)

- https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html (feature combinations)

- https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.quantile_transform.html (transform to cum. distribution)

https://scikit-learn.org/stable/modules/impute.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Normalizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/feature_extraction.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.quantile_transform.html

Data Science Steps

● Exploration (iterates with pre-proc.) [pandas/scikit-learn/matplotlib/Seaborn…]

Get some insights on the data, understand its structure, create initial hypothesis

Clustering algorithms, histograms, plots, correlation…
https://scikit-learn.org/stable/modules/clustering.html -> Agglomerative clustering

https://seaborn.pydata.org/generated/seaborn.heatmap.html

https://seaborn.pydata.org/generated/seaborn.pairplot.html

● Model Building [scikit-learn, TensorFlow, Keras,…]

Random Forests, SVM’s, Rule-based, Deep Learning, K-Nearest Neighbours…

(semi)-supervised / reinforced (dynamic model selection) / representation learning…

Estimators (fit -> predict)
https://docs.scipy.org/doc/scipy-0.15.1/reference/generated/scipy.spatial.distance.cdist.html (distance calculations <- embeddings)

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html (tree-based model)

https://scikit-learn.org/stable/modules/neighbors.html (K-nearest neighbors, ML basics, curse of dimensionality)

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html (Linear regression , ML basics, high bias)

https://scikit-learn.org/stable/modules/clustering.html
https://seaborn.pydata.org/generated/seaborn.heatmap.html
https://seaborn.pydata.org/generated/seaborn.pairplot.html
https://docs.scipy.org/doc/scipy-0.15.1/reference/generated/scipy.spatial.distance.cdist.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/neighbors.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html

Data Science Steps

● Model Validation [scikit-learn, matplotlib, Seaborn…]

Prediction accuracy, ranking correctness, Precision vs. Recall, Temporal complexity!!

https://scikit-learn.org/stable/modules/model_evaluation.html

Types of error (false positive vs. false negative – what is more important?)

Results visualization (PCA, Self-organizing maps https://github.com/JustGlowing/minisom)

Results vs. Model hyperparameters -> Seaborn heatmaps

● Model Deployment

Finally you’ll deploy your model into the wild. As you gather more data and feedback on how its

doing you’ll be able to tweak and improve it as time goes on.

https://scikit-learn.org/stable/modules/model_evaluation.html#model-evaluation
https://github.com/JustGlowing/minisom

So, what to start with:
- how to work with data?

- where to write code?

NumPy is a library for the Python

programming language, adding

support for large, multi-

dimensional arrays and matrices,

along with a large collection of

high-level mathematical functions

to operate on these arrays.

Pandas is a software library

written for the Python

programming language for

data manipulation and

analysis. In particular, it offers

data structures and operations

for manipulating numerical

tables and time series.

Open-source web application that

allows you to create and share

documents that contain live code,

equations, visualizations and

narrative text

http://jupyter.org/

http://jupyter.org/

Data Science Specifics

You mainly code to get some answers
● Proof-of-concept solutions

Perhaps 50%-90% of your ideas never make it into production

Do not over-think the implementation

Should this be written as a lambda function? Who cares?

But beware of runtime complexity (you want your answers today)

● Often, one-time running code

Some questions do not re-appear

Often, two individuals wants to ask slightly different set of questions

Which is OK by default if you can say why

Certain level of „freedom“ with the assignments

Get idea -> code -> evaluate -> discard, save for later, extend or plug into production

Data Science Specifics

You mainly code to get some answers
● Optimize for :

coding time +

expected runtime +

extendability (* Prob(code will ever be extended))

