
Deep Learning & TensorFlow with Keras

These slides are based on: 

https://www.slideshare.net/kerveros99/deep-learning-for-
recommender-systems-recsys2017-tutorial

https://cs224d.stanford.edu/lectures/CS224d-
Lecture7.pdf

https://www.slideshare.net/kerveros99/deep-learning-for-recommender-systems-recsys2017-tutorial
https://cs224d.stanford.edu/lectures/CS224d-Lecture7.pdf


Why Deep Learning?

ImageNet challenge error rates (red line = human performance)



Why Deep Learning?



Neural Model



Neuron a.k.a. Unit



Learning



Stochastic Gradient Descent

• Generalization of (Stochastic) Gradient Descent



Stochastic Gradient Descent



Modern Deep Networks

• Ingredients:

• Rectified Linear Activation  
function a.k.a. ReLu



Modern Deep Networks

• Mini-batches:

– Stochastic Gradient Descent (or its evolutions)

– Compute gradient over many (50 -100) data points  
(minibatch) and update.

– Shared parameters

– Several layer / network-level templates

– CNN, RNN, 2vec models, Autoencoders, 
Generative Adversal Networks (GAN),...

– Transfer learning (from one problem to another)



Modern Feedforward Networks

• Ingredients:

• Adagrad a.k.a. adaptive learning rates

Decrease step size
over time

In a factor-wise
fashion



[Fig source: http://vision03.csail.mit.edu/cnn_art/index.html ]

Semantic descriptors - deep learning (NDBI034, Lect. 8)

http://vision03.csail.mit.edu/cnn_art/index.html


Deep-Learning Package Zoo

● Torch

● Caffe

● Theano (Keras, Lasagne)

● CuDNN

● Tensorflow

● Mxnet

● Etc.



Deep-Learning Package Design Choices

● Model specification: Configuration file (e.g. Caffe,  

DistBelief, CNTK) versus programmatic generation (e.g.  

Torch, Theano, Tensorflow)

● For programmatic models, choice of high-level language:  

Lua (Torch) vs. Python (Theano, Tensorflow) vs others.

● We chose to work with python because of rich community  

and library infrastructure.

● However, the most important is DEAD or ALIVE

● TensorFlow is pretty much alive



What is TensorFlow?

● TensorFlow is a deep learning library  

recently(2017?) open-sourced by Google.

● But what does it actually do?

○ TensorFlow provides primitives for defining 

functions on tensors and  automatically 

computing their derivatives.

○ Much more nowadays
○ https://docs.anaconda.com/anaconda/user-guide/tasks/tensorflow/

https://docs.anaconda.com/anaconda/user-guide/tasks/tensorflow/


But what’s a Tensor?

● Formally, tensors are multilinear maps from vector spaces  

to the real numbers ( vector space, and dual space)

)

)

)

● A scalar is a tensor (

● A vector is a tensor (

● A matrix is a tensor (

● Common to have fixed basis, so a tensor can be  

represented as a multidimensional array of numbers.



Why the „Flow“?

● Tensorflow constructs a graph of the evaluation G

● The nodes in the graph are evaluated upon request 

(.eval() / session.run() ) – TF1.0

● TenorFlow can automatically calculate derivates for each 

of the nodes and therefor we can use SGD easily to 

optimize w.r.t. Arbitrary error metric

● Significant changes in TF2.0 interface (but internally it 

remains a graph all the same)



TensorFlow 1.0 code

I n  [ 3 1 ] :  import tensorf low as t f

In  [ 3 2 ] : t f . In te rac t i veSess ion ( )

In  [ 3 3 ] :  a = t f . z e r o s ( ( 2 , 2 ) ) ;  b = t f . ones ( (2 ,2 ) )

In  [ 3 4 ] :  tf.reduce_sum(b, reduct ion_indices=1).eval()   

Out[34]: a r ray ( [ 2 . , 2 . ] , dtype=float32)

In  [ 3 5 ] : a.get_shape()

Out[35]:  TensorShape([Dimension(2), Dimension(2)])

I n  [ 3 6 ] :  t f . reshape(a,  ( 1 , 4 ) ) . e v a l ( )

Out[36]: a r r a y ( [ [ 0 . , 0 . , 0 . , 0 . ] ] , dtype=float32)

TensorShape behaves  

like a python tuple.

More on . e v a l ( )

in a few slides

More on Session

soon

#import tensorflow.compat.v1 as tf



TensorFlow Session Object (1) # TF1.0

● “A Session object encapsulates the environment in which  

Tensor objects are evaluated” - TensorFlow Docs

I n   [ 2 0 ] :  a  = t f . cons tan t (5 .0 )

In   [ 2 1 ] :  b  = t f . cons tan t (6 .0 )

In  [ 2 2 ] :  c = a * b

In  [ 2 3 ] :  wi th t f .Sess ion ( )  as sess:

pr in t (sess . run(c ) )   

p r i n t ( c . e v a l ( ) )

. . . . :

. . . . :

. . . . :   

30.0

30.0

c .eva l ( ) is just syntactic sugar for

sess.run(c) in the currently active

session!

https://www.tensorflow.org/versions/r0.8/api_docs/python/client.html#Session


Placeholders and Feed Dictionaries (2)

I n  [ 9 6 ] :  input1 = t f . p l a c e h o l d e r ( t f . f l o a t 32 )

In  [ 9 7 ] :  input2 = t f . p l a c e h o l d e r ( t f . f l o a t 32 )

In  [ 9 8 ] :  output = t f .mu l ( i npu t1 , input2)

In  [ 9 9 ] :  wi th t f .Sess ion ( )  as sess:

. . . . : p r i n t (sess . run ( [ou tpu t ] ,  feed_d ic t={ inpu t1 : [7 . ] , i n p u t 2 : [ 2 . ] } ) )

. . . . :

[ a r r a y ( [  1 4 . ] , dtype=f loat32)]

Fetch value of output  

from computation graph.

Feed data into  

computation graph.

Define t f .p laceholder

objects for data entry.



Ex: Linear Regression in TensorFlow (3)

# Define var iables to  be learned

with t f .var iab le_scope(" l inear - regress ion" ) :   

W = t f .ge t_var iab le ( "we igh ts " ,  ( 1 , 1 ) ,

i n i t i a l i ze r= t f . random_norma l_ in i t i a l i ze r ( ) )   

b = t f . ge t_va r i ab le ( "b ias " , ( 1 , ) ,

i n i t i a l i z e r = t f . c o n s t a n t _ i n i t i a l i z e r ( 0 . 0 ) )   

y_pred = t f .matmul (X, W) + b

loss = tf.reduce_sum((y - y_pred)**2/n_samples)

Note reuse=False so  

these tensors are  

created anew



TensorFlow 2.0

● Eager evaluation (no Sessions anymore)

● Model building with TF.Keras (high level abstraction)

● Compile model with error metric and solver

● Train -> evaluate -> predict

● TF.data.Dataset handling the input data 

● (instead of placeholders)

● Support for pipelining

● Seemingly much more single-purpose than TF1.0

● But common things are done easier

● Heavily researched (outdated tutorials & StOF)



TensorFlow 2.0 Datasets

● Use existing data or create your own e.g. from numpy

● Support for pipelined pre-processing

import tesorflow as tf
train, test = tf.keras.datasets.fashion_mnist.load_data()

images, labels = train
images = images/255

dataset = tf.data.Dataset.from_tensor_slices((images, labels))
dataset

>> <TensorSliceDataset shapes: ((28, 28), ()), types: (tf.float64, tf.uint8)>

Then you want to create a way to iterate through data
More details: https://www.tensorflow.org/guide/data



TensorFlow 2.0 Models (TF.Keras)

● Common types of network layers 

● (abstraction on tensors)

● Sequential model

● Simple pipeline processing (e.g. via dense layers)

More details: https://www.tensorflow.org/guide/keras/sequential_model

# Define Sequential model with 3 layers

model = keras.Sequential(

[

layers.Dense(2, activation="relu", name="layer1"),

layers.Dense(3, activation="relu", name="layer2"),

layers.Dense(4, name="layer3"),

]

)

# Call model on a test input

x = tf.ones((3, 3))

y = model(x)

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras import layers

https://www.tensorflow.org/guide/keras/sequential_model


TensorFlow 2.0 Models (TF.Keras)

● Continue with tf2_basics.ipynb



„Large“ homework: 

- see nprg067_04_task.ipynb

● Build a siammese network:

● Is the pair of data from the same class?

● One-shot classification task

● What if a new class emerges?

● Re-train model (standard ML) or use similarity of 

embeddings

● Two „towers“ that share parameters and the 

similarity calculation on top of it

● Use tf.keras layers + model


