
Deep Learning & TensorFlow with Keras

These slides are based on:

https://www.slideshare.net/kerveros99/deep-learning-for-
recommender-systems-recsys2017-tutorial

https://cs224d.stanford.edu/lectures/CS224d-
Lecture7.pdf

https://www.slideshare.net/kerveros99/deep-learning-for-recommender-systems-recsys2017-tutorial
https://cs224d.stanford.edu/lectures/CS224d-Lecture7.pdf

Why Deep Learning?

ImageNet challenge error rates (red line = human performance)

Why Deep Learning?

Neural Model

Neuron a.k.a. Unit

Learning

Stochastic Gradient Descent

• Generalization of (Stochastic) Gradient Descent

Stochastic Gradient Descent

Modern Deep Networks

• Ingredients:

• Rectified Linear Activation
function a.k.a. ReLu

Modern Deep Networks

• Mini-batches:

– Stochastic Gradient Descent (or its evolutions)

– Compute gradient over many (50 -100) data points
(minibatch) and update.

– Shared parameters

– Several layer / network-level templates

– CNN, RNN, 2vec models, Autoencoders,
Generative Adversal Networks (GAN),...

– Transfer learning (from one problem to another)

Modern Feedforward Networks

• Ingredients:

• Adagrad a.k.a. adaptive learning rates

Decrease step size
over time

In a factor-wise
fashion

[Fig source: http://vision03.csail.mit.edu/cnn_art/index.html]

Semantic descriptors - deep learning (NDBI034, Lect. 8)

http://vision03.csail.mit.edu/cnn_art/index.html

Deep-Learning Package Zoo

● Torch

● Caffe

● Theano (Keras, Lasagne)

● CuDNN

● Tensorflow

● Mxnet

● Etc.

Deep-Learning Package Design Choices

● Model specification: Configuration file (e.g. Caffe,

DistBelief, CNTK) versus programmatic generation (e.g.

Torch, Theano, Tensorflow)

● For programmatic models, choice of high-level language:

Lua (Torch) vs. Python (Theano, Tensorflow) vs others.

● We chose to work with python because of rich community

and library infrastructure.

● However, the most important is DEAD or ALIVE

● TensorFlow is pretty much alive

What is TensorFlow?

● TensorFlow is a deep learning library

recently(2017?) open-sourced by Google.

● But what does it actually do?

○ TensorFlow provides primitives for defining

functions on tensors and automatically

computing their derivatives.

○ Much more nowadays
○ https://docs.anaconda.com/anaconda/user-guide/tasks/tensorflow/

https://docs.anaconda.com/anaconda/user-guide/tasks/tensorflow/

But what’s a Tensor?

● Formally, tensors are multilinear maps from vector spaces

to the real numbers (vector space, and dual space)

)

)

)

● A scalar is a tensor (

● A vector is a tensor (

● A matrix is a tensor (

● Common to have fixed basis, so a tensor can be

represented as a multidimensional array of numbers.

Why the „Flow“?

● Tensorflow constructs a graph of the evaluation G

● The nodes in the graph are evaluated upon request

(.eval() / session.run()) – TF1.0

● TenorFlow can automatically calculate derivates for each

of the nodes and therefor we can use SGD easily to

optimize w.r.t. Arbitrary error metric

● Significant changes in TF2.0 interface (but internally it

remains a graph all the same)

TensorFlow 1.0 code

I n [3 1] : import tensorf low as t f

In [3 2] : t f . In te rac t i veSess ion ()

In [3 3] : a = t f . z e r o s ((2 , 2)) ; b = t f . ones ((2 ,2))

In [3 4] : tf.reduce_sum(b, reduct ion_indices=1).eval()

Out[34]: a r ray ([2 . , 2 .] , dtype=float32)

In [3 5] : a.get_shape()

Out[35]: TensorShape([Dimension(2), Dimension(2)])

I n [3 6] : t f . reshape(a, (1 , 4)) . e v a l ()

Out[36]: a r r a y ([[0 . , 0 . , 0 . , 0 .]] , dtype=float32)

TensorShape behaves

like a python tuple.

More on . e v a l ()

in a few slides

More on Session

soon

#import tensorflow.compat.v1 as tf

TensorFlow Session Object (1) # TF1.0

● “A Session object encapsulates the environment in which

Tensor objects are evaluated” - TensorFlow Docs

I n [2 0] : a = t f . cons tan t (5 .0)

In [2 1] : b = t f . cons tan t (6 .0)

In [2 2] : c = a * b

In [2 3] : wi th t f .Sess ion () as sess:

pr in t (sess . run(c))

p r i n t (c . e v a l ())

. . . . :

. . . . :

. . . . :

30.0

30.0

c .eva l () is just syntactic sugar for

sess.run(c) in the currently active

session!

https://www.tensorflow.org/versions/r0.8/api_docs/python/client.html#Session

Placeholders and Feed Dictionaries (2)

I n [9 6] : input1 = t f . p l a c e h o l d e r (t f . f l o a t 32)

In [9 7] : input2 = t f . p l a c e h o l d e r (t f . f l o a t 32)

In [9 8] : output = t f .mu l (i npu t1 , input2)

In [9 9] : wi th t f .Sess ion () as sess:

. . . . : p r i n t (sess . run ([ou tpu t] , feed_d ic t={ inpu t1 : [7 .] , i n p u t 2 : [2 .] }))

. . . . :

[a r r a y ([1 4 .] , dtype=f loat32)]

Fetch value of output

from computation graph.

Feed data into

computation graph.

Define t f .p laceholder

objects for data entry.

Ex: Linear Regression in TensorFlow (3)

Define var iables to be learned

with t f .var iab le_scope(" l inear - regress ion") :

W = t f .ge t_var iab le ("we igh ts " , (1 , 1) ,

i n i t i a l i ze r= t f . random_norma l_ in i t i a l i ze r ())

b = t f . ge t_va r i ab le ("b ias " , (1 ,) ,

i n i t i a l i z e r = t f . c o n s t a n t _ i n i t i a l i z e r (0 . 0))

y_pred = t f .matmul (X, W) + b

loss = tf.reduce_sum((y - y_pred)**2/n_samples)

Note reuse=False so

these tensors are

created anew

TensorFlow 2.0

● Eager evaluation (no Sessions anymore)

● Model building with TF.Keras (high level abstraction)

● Compile model with error metric and solver

● Train -> evaluate -> predict

● TF.data.Dataset handling the input data

● (instead of placeholders)

● Support for pipelining

● Seemingly much more single-purpose than TF1.0

● But common things are done easier

● Heavily researched (outdated tutorials & StOF)

TensorFlow 2.0 Datasets

● Use existing data or create your own e.g. from numpy

● Support for pipelined pre-processing

import tesorflow as tf
train, test = tf.keras.datasets.fashion_mnist.load_data()

images, labels = train
images = images/255

dataset = tf.data.Dataset.from_tensor_slices((images, labels))
dataset

>> <TensorSliceDataset shapes: ((28, 28), ()), types: (tf.float64, tf.uint8)>

Then you want to create a way to iterate through data
More details: https://www.tensorflow.org/guide/data

TensorFlow 2.0 Models (TF.Keras)

● Common types of network layers

● (abstraction on tensors)

● Sequential model

● Simple pipeline processing (e.g. via dense layers)

More details: https://www.tensorflow.org/guide/keras/sequential_model

Define Sequential model with 3 layers

model = keras.Sequential(

[

layers.Dense(2, activation="relu", name="layer1"),

layers.Dense(3, activation="relu", name="layer2"),

layers.Dense(4, name="layer3"),

]

)

Call model on a test input

x = tf.ones((3, 3))

y = model(x)

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras import layers

https://www.tensorflow.org/guide/keras/sequential_model

TensorFlow 2.0 Models (TF.Keras)

● Continue with tf2_basics.ipynb

„Large“ homework:

- see nprg067_04_task.ipynb

● Build a siammese network:

● Is the pair of data from the same class?

● One-shot classification task

● What if a new class emerges?

● Re-train model (standard ML) or use similarity of

embeddings

● Two „towers“ that share parameters and the

similarity calculation on top of it

● Use tf.keras layers + model

