Evolution of Common Lisp Object System

Josef Matéjka
01.02.2023

1 Introduction

Object-oriented programming was and still is one of the main paradigms used
today. Languages like C#, Java, Javascript, Python, and many more are
said to be OOP. They provide strong encapsulation of data - classes have pri-
vate/protected/public methods and/or slots, users can derive new classes using
inheritance, and they can overload methods in those new classes. It is usually
said that the encapsulation of data and dynamic dispatch are regarded as fun-
damentals of OOP (for example see: https://learn.microsoft.com/en-us/
dotnet/csharp/fundamentals/tutorials/oop).

In this short article, we would like to look at the evolution of the different
object-oriented systems for a language called Common Lisp. Lisp language
was invented/discovered by John McCarthy in 1958, and in this regard, it is
one of the oldest programming languages, the object system was added to the
Common Lisp in 1986, therefore it is also much older than Java, C#, and
Python. Although it is old, we believe it has some forgotten ideas people should
know about.

2 Lisp and its dialects

Lisp is an umbrella term that includes many programming languages and di-
alects, since McCarthy’s discovery many developers went and implemented their
own version of Lisp[I]. In this article we will work with three Lisp languages first
one will be MACLISP, then Interlisp and last we will talk about Common Lisp.
For our purposes the differences between those languages are not important,
therefore we often will call them just Lisp.

3 Object Oriented Programming

Before we start with Lisp we will look at a different programming language,
which was developed by Alan Kay and his colleagues (Adele Goldberg and Dan
Ingalls) in the 1970s in Xerox Palo Alto Research Center.[2] The language is
called SMALLTALK, it is the first pure object-oriented language, it has brought


https://learn.microsoft.com/en-us/dotnet/csharp/fundamentals/tutorials/oop
https://learn.microsoft.com/en-us/dotnet/csharp/fundamentals/tutorials/oop

the OOP paradigm to the public. The version SMALLTALK-80 was featured
on the cover of Byte Magazine.

Alan Kay in his research has introduced six main ideas for SMALLTALK-72
(it was released in 1972), which can be regarded as basic rules for what it means
object-oriented programming[2]. They are:

1. Everything is an object.

2. Objects communicate by sending and receiving messages (in terms of ob-
jects).

3. Objects have their own memory (in terms of objects).
4. Every object is an instance of a class (which must be an object).

5. The class holds the shared behavior for its instances (in the form of objects
in a program list).

6. To eval a program list, control is passed to the first object and the re-
mainder is treated as its messageEI

The first rule simply gives regularity to the language. The second rule tells
us how to work with objects, sending messages in SMALLTALK is similar to
invoking the method of an object in modern OOP languages. Let us illustrate
it in the following example:

15 between: 1 and: 16

We send a message between:and: with parameters 1 and 16 to the object 15, in
C# we would send something like

15.BetweenAnd (1, 16);

The main reason for this rule is the regularity of syntax. Compared to C# there
is no special syntax for instance creation, you simply send a message new to the
appropriate class and the instance of the class is created. In SMALLTALK
everything happens by sending messages, which makes the syntax regular and
easy to understand.

The rules 3., 4. and 5. will be familiar to a modern OOP developer. Objects
have slots/fields where some data can be stored, or loaded. Every object is an
instance of a class - in SMALLTALK this means that also a class is an instance
of another class, which is usually called a meta-class. Also, the instances of
a single class behaving according to their class, therefore the class holds their
behavior. The last rule introduces a lisp-like property to SMALLTALK]2], this
allows for the evaluation of a list of objects. It was added by Alan Kay who was
familiar with Lisp because he deemed it useful.

Interestingly encapsulation and inheritance are not listed them. SMALLTALK
itself does not have any notion of private/protected and/or public methods, ev-
erything is visible to the developer. Also, let us note that the inheritance was
in SMALLTALK added in a later version.

IThis last rule was added for convenience, this is similar to what Lisp does. First element
of a list is regarded as a function/object which will evaluate the rest of the items in the list.




4 FLAVORS

The first object-oriented extension was developed by Howard Cannon at the
MIT Artificial Intelligence Laboratory for a lisp language called MACLISP. It
was released in 1979, three years after SMALLTALK-76. We will look at the
manual called Flavors: Message passing in the Lisp Machine written by Daniel
Weinreb and Daniel Moon[3], the name already suggests that message passing
is the main idea. This is close to Alan Kay’s thinking which has famously said:

The big idea is messaging. I’'m sorry that I long ago coined the term
“objects* for this topic because it gets many people to focus on the
lesser idea.

The manual lists modularity as the main benefit of OOP. They claim that
if developers has at their disposal modular programming constructs and tech-
niques it helps and encourages to write programs that are easy to use and easy
to understand. Another benefit of an object is that it can hide its implemen-
tation from the developer and they can use it as a black box. As long as the
developer follows the documented interface they can use the objects safely.[3]

Since Lisp is more of a hacker language, which is fully reflexive and does not
hide anything from the developer, the manual gives emphasis on following the
documented interfaces and avoiding using hacks (like using aref to get property
from the object).

4.1 Code example

We will take the first code sample from the manual, where we describe the
main ideas and functionality of FLAVORS. In this system there are no classes,
what we usually call class is here under the name flavor. On top of the object
hierarchy was vanilla flavor, mixins are usually described as mixing flavors of
ice cream together.[3]

(defflavor ship (x-position y-position
x-velocity y-velocity mass)
O

:gettable-instance-variables)

(defmethod (ship :speed) ()
(sqrt (+ (© x-velocity 2)
("~ y-velocity 2))))

(defmethod (ship :direction) ()
(atan y-velocity x-velocity))

We define flavor/class ship with slots x-position, y-position, x-velocity, y-
velocity, and mass. The flavor has two methods: speed and direction. The
symbol :gettable-instance-variables specified that the slot can be read, user can



also specify :settable-instance-variable and :initable-instance-variables which al-
lows for defining initial values for slots in the constructor.

Suppose we have :initable-instance-variables we will now show how the in-
stance of flavor ship can be constructed:

(make-instance 'ship
':x-position 0.0
':y-position 3.0
':mass 3.5)

To send a message to the instance of ship we have to use the function funcall. If
we have variable my-ship which is an instance of ship flavor we can send message
:direction this way:

(funcall my-ship ':direction)

In MACLISP funcall has the same meaning as in Common Lisp, the first
argument is a function that will be invoked, and the rest are the arguments[4].
This means that internally each object was callable/functional and the message
was passed to it as the argument.

4.2 Mixing flavors

We have already mentioned so-called mixins, these special flavors served for
extending the functionality of other flavors. These mixins can be viewed as
an abstract class or interface in languages like C#, mixins also should not be
instantiated but only used through inheritance[3].

Before we show the example we need to talk about inheritance and method
combination. In modern OOP languages, the user can define a class, and declare
some methods as virtual and those can be overloaded in the class descendants.
In flavors all prime methods are virtual, therefore any prime method can be
overloaded in the descendant flavor.

But Flavors object system can do much more. There are three types of
methods, before, after, and primary methods. When we invoke a method in a
flavor this happens:

1. All before methods are run.
2. Single primary method is run.
3. All after methods are run.

In the flavor definition user can define in which order will the methods be run
(from closest parent to the furthest or the opposite) and also what happens with
the results of those methods - they can be concatenated together, they can be
aggregated or only the result of primary method can be returned[3].

Back to the example, which is taken from the article The structure of a
programming language revolution[5] by Richard P. Gabriel. Suppose we want
to create three mixins greeter, bachelor, and exclamation. All these mixins will



have a method greet that we utilize, we also want to define a flavor person with
name and surname slots and with the greet primary method. Lastly, we will
create a flavor mgr-student which will also have method greet, when we invoke
greet on the mgr-student we will get the string ”Hello, be. {name} {surname}”.

; greeter mizin
(defflavor greeter ()
O

(:method-combination :base-flavor-first :greet))

; greeter before method
(defmethod (greeter :before :greet) ()
(format nil "Hello, "))

; person flavor

(defflavor person (name surname)
:initable-instance-variables
:gettable-instance-variables)

; thts is primary method on person,

; 1t s overloaded in flavor mgr-student
(defmethod (person :greet)

(format nil ""A" (funcall self :name)))

; bachelor mizin
(defflavor bachelor ())

; bachelor before method
(defmethod (bachelor :before :greet) ()
(format nil "bc. "))

; exclamation mixin
(defflavor exclamation ())

; exclamation after method
(defmethod (exclamation :after :greet) ()
(format nil "!"))

; mgr-student inherits from person flavor
; and from mizins greeter, bachelor and

; exclamation

(defflavor mgr-student (greeter

bachelor

person

exclamation))



; when invoked, this primary method will call
; greeter before method

; bachelor before method

; this primary method

; exclamation after method

(defmethod (mgr-student :greet) ()

(format nil "~“A "A" (funcall self :name)
(funcall self :surname)))

4.3 New Flavors

In the year 1986 the extension Flavors was ported for the Common Lisp language
by David Moon. The major change is in the method definition, same as in
current CLOS user must define genericEI using defgeneric macro and after that,
they can create methods using defmethod macro, methods are no longer invoked
using funcall macro, but they can be invoked directly[6].

The shift from “sending messages“ to invoking generic methods is in our
opinion important, although generic methods were used before New Flavors,
their invocation was still interpreted semantically as sending a message. With
generic methods in New Flavors we do not have to type funcall or send we can
invoke any method just like any ordinary function in Lisp, which makes the
interface for OOP more consistent with the whole language. Also, it removes
the difference between the method of an object and a classic function, this
allows users to think more functionally about their programs and gives the
OOP programming functional flavor.

4.4 LOOPS

Another popular OOP extension for Lisp was released in 1983 for Interlisp
language, its name is LOOPS and it was developed by Daniel G. Bobrow[7].
The manual tells us, that the LOOPS is a more ambitious project than LOOPS,
since it adds object-oriented, data-oriented, and ruleset-oriented programming
to Lisp. We will mostly focus on the object-oriented aspect and maybe other
features that directly influenced CLOS (Common Lisp Object System).

It follows Alan Kay’s ideas closely, for example, each class is also an object
- we did not encounter this idea in Flavors. In LOOPS there is still the concept
of sending messages to objects, this is done using the + operator:

(H object message arg0 ... argn)

We create an instance of a class using the message New sent to the class. And
we can create a new class by sending a message New to the meta-class. This
shows how much the LOOPS followed the mantras “everything is an object“
and “objects communicate by sending and receiving messages “[7].

2Generic method in Lisp is a method that provides dynamic dispatch according to the
classes passed to the method.



To show the similarities between LOOPS and SMALLTALK, let us show a
small example in which we create simple class named StudentEmployee which
inherits from classes Student and Employee. We could start by:

(H ($ Class) New 'StudentEmployee '(Student Employee))

Here ($ Class) represents metaclass for classes. Or we could simply use macro
DC:

(DC 'StudentEmployee '(Student Employee))

After that user could write (EC 'StudentEmployee) and according to the manual
this command would open an editor looking like this:

[DEFCLASS StudentEmployee

(MetaClass Class Edited: (x 1lc: "18-0ct-82 14:26"))
(Supers Student Employee)

(InstanceVariables)

(Methods]

The user could edit and save the class, then it would be recompiled. Pro-
gramming in LOOPS was interactive, whenever the user wanted to edit a class
or method an editor opened with the method/class definition, after the user
saved their changes the method/class would get recompiled[7]. This is similar
to how the user usually works with System Browser in Smalltalk-80.

The inheritance and method combination is very close to how it works in
modern OOP languages (and SMALLTALK). When we create a new class, we
can override a method behavior, we can also invoke the definition in the parent
using the operator «Super or we could invoke the same method in all the
ancestors using the operator «SuperFringe. When we compare this to flavor
we do not have a concept of :before or :after methods.

Also, we find it interesting that LOOPS had a concept of a getter and a setter
as we know it from C#. We could for each slot define a special get method that
would be invoked when we would access the slot and the same goes for the set
method[7]. Let us note that this functionality was added to C# 6.0, in this
sense LOOPS was ahead of time.

4.5 CommonLoops

CommonLoops was released in 1986 after the successful consolidation of Lisp
dialects into one Common Lisp language. As we dived into CommonLoops we
expected it to be just an extension of LOOPS rewritten for Common Lisp, but
in reality, CommonLoops is something entirely different.

It is a Common Lisp Object-Oriented System that aims to provide compat-
ibility with Lisp functional style, it aims to provide a powerful base for writing
your own object-oriented languages and it should be easily portable to other
lisp systems. The CommonLoops paper says that this system is a good base
for implementing languages like Flavors, LOOPS, ObjectLisp, and others, this



suggests that the CommonLoops aims to take the base of OOP and implement
it in efficient and portable way[g].

Still, we do not call or invoke methods in CommonLoops but send messages,
this is done using the macro called send like this:

(send object message arg0 ... argn)
Internally this call is translated into
(funcall (function-specified-by object) arg0 ... argn)

The definition of the method is completely different from LOOPS system
and is more similar to Flavors, for example, we define method move for class
block:

(defmeth move ((obj block) x y)
; ... tmplementation

)

Interestingly we can define multi-methods which are specialized not only by the
class of receiving object but also by the class of some (or all) of its arguments,
this means that we could define a multi-method move that would behave differ-
ently if x argument is an integer or complex number, same goes for argument
y. Multi-method could look like this:

(defmeth move ((obj block) (x complex) (y complex))
; ... implementation

)

The algorithm is the following: we look into the class of the instance that
received the message then we check against the defined method trying to find
the one, that is mostly specialized to our call. Also, it is worth mentioning, that
CommonLoops gives the ability to write user-defined method-lookup|8g].

Classes are also defined similarly to Flavors, we use defstruct macro, and
multiple inheritance is still allowed. In this sense it is pretty standard, the user
can define from which meta-class this class inherits, can define slots (class and
instance) and their accessors - for example, read, write, or both. Since defstruct
is a macro that also exists in plain Common Lips it needed to be rewritten in
order to accept also the class definition.

CommonlLoops came up with a robust object hierarchy, that incorporated
all built-in types of Common Lisp. Every class is derived from T (which is the
true value in Common Lisp), and direct descendants of T are built-in types
like number, sequences, and so on. Also the class object is a descendant of T.
Most user-made classes are derived from a class called simply class which is a
descendant of object.

In conclusion, CommonLoops should be viewed as a framework that can be
utilized to write better OOP languages in Lisp. In the paper, it is mentioned
that its abilities are strict super-set to New Flavors and users can even write
New Flavors using CommonLoops. This level of extensibility fully aligns with
lisp culture, where the user is given the ability to rewrite almost anything to
their liking.



4.6 Common Lisp Object System

The work on Common Lisp Object System started in 1986. The process for
ANSI standard took two years and the result is based mainly on CommonLoops
and New Flavors. The main idea was to create a system that is:

1. simple to use,
2. functional at heart,
3. and extensible.[9]

Therefore the new system has generic methods from New Flavors, but also
allows dynamic dispatch on multiple arguments (multi-methods from Common-
Loops), it also supports method combination (:after, :before and others). The
object hierarchy was taken from CommonLoops, this means that everything in
Common Lisp is an object and we can define meta-classes that can define the
behavior of derived classes - this is part of meta-object protocol[d].

4.7 Conclusion

We have seen the evolution of object-oriented programming in LISP, the func-
tional nature of the language sharped also the OOP paradigm, where we focus
more on generic functions than the objects itself. Also it is worth noting, that
CLOS provides many features that are not seen in other OOP languages like
method combination and multi-methods, which allow for dynamic dispatch on
all of its arguments. Plus if user is not happy with the current CLOS they can
extend or change it to their liking using the meta-object protocol.

References

[1] G. L. Steele and R. P. Gabriel, “The evolution of lisp,” in History of pro-
grammang languages—II, pp. 233-330, 1996.

[2] A. C. Kay, “The early history of smalltalk,” in History of programming
languages—II, pp. 511-598, 1996.

[3] D. Weinreb and D. Moon, “Flavors: Message passing in the lisp machine.,”
tech. rep., MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFI-
CIAL INTELLIGENCE LAB, 1980.

[4] D. A. Moon, MACLISP reference manual. Massachusetts Institute of Tech-
nology, 1974.

[5] R. P. Gabriel, “The structure of a programming language revolution,”
in Proceedings of the ACM international symposium on New ideas, new
paradigms, and reflections on programming and software, pp. 195-214, 2012.

[6] S. C. Lisp, “Language concepts,” Symbolics, August, 1986.



[7]

8]

D. G. Bobrow and M. Stefik, The LOOPS manual. Knowledge Systems
Area, Xerox Palo Alto Research Center, 1983.

D. G. Bobrow, K. Kahn, G. Kiczales, L. Masinter, M. Stefik, and F. Zdy-
bel, “Commonloops: Merging lisp and object-oriented programming,” ACM
Sigplan Notices, vol. 21, no. 11, pp. 17-29, 1986.

L. G. DeMichiel and R. P. Gabriel, “The common lisp object system: An
overview,” in ECOOP’87 European Conference on Object-Oriented Program-
ming: Paris, France, June 15-17, 1987 Proceedings, pp. 151-170, Springer,
2000.

10



	Introduction
	Lisp and its dialects
	Object Oriented Programming
	FLAVORS
	Code example
	Mixing flavors
	New Flavors
	LOOPS
	CommonLoops
	Common Lisp Object System
	Conclusion


