Design Patterns in Package Managers

Peter Facko

April 23, 2023

Abstract
A standardized package manager is one of the most common features of modern programming
languages and yet in C++, it is one of the most missed features by its users. In this article, we
examine multiple existing package managers from which we derive a number of design patterns.
In order to increase accessibility, these patterns are described using a structured pattern language.

1 Introduction

The 2022 annual survey of C++ developers done by the Standard C++ Foundation contained these two
questions: ”Which of these do you find frustrating about C++ development?” and “How do you manage
your C++ 1st and 3rd party libraries?” [2]. The top answers were “Managing libraries my application
depends on” and “The library source code is part of my build”, respectively. Here is an example
selection of languages with a standard or a de facto standard package manager: D, Go, JavaScript,
NET, Python, Ruby, and Rust. These two facts together show that 1) a package manager is a desired
and common feature of any programming language and 2) C++ doesn’t have a package manager and it
is its most frustrating non-feature. In this paper, we examine multiple package managers mostly from
the C++ environment and from them, we derive some of the most frequently occurring design patterns.
We describe the patterns using a pattern language similar to the one used in the article “A Pattern
Language of an Exploratory Programming Workspace” [3].

We'll use the following pattern language: First, we introduce the problem context for the pattern.
Then we describe the problem solution, which is the description of the pattern. These are the parts
most useful to the majority of readers. Next comes a section with pattern drawbacks, as patterns
don’t typically come without a price. Since these patterns are derived from a specific package manager
analysis, we mention the specific examples of pattern occurrence in real software next. Lastly, we
reference related patterns, as the discovered patterns can be grouped by their problem scope into a
more comprehensible structure.

The analyzed package managers are Conan, vcpkg, nix, tipi.build, build2, and npm.

2 Design patterns

2.1 Package context
2.1.1 Problem

Managed packages are always inherently relative to some context. In the typical case of an operating
system package manager, the context is the whole system. The fact that in such cases the context is
very broad and also implicit, makes it very difficult for the manager and the user to take advantage of
the existence of package contexts.

Consider a situation where there are two projects, project A and B, developed on the same machine
with package management done by a typical OS package manager. Project A requires package P with
version V1 and project requires P version V2. Suppose that the simultaneous presence of versions
V1 and V2 would lead to the diamond problem. Since the context for the OS manager is the whole
system, the manager cannot allow having both versions of package P installed.

When upgrading, removing, or changing the installed packages in any way, there is a small pos-
sibility that some binary from the package will run during the transformation process. Having this
operation be non-atomic could lead to unexpected runtime behavior of the package.



2.1.2 Solution

To make the package context concept more useful, managers can make package contexts explicit in
two ways. One is documentation, where the existence of package contexts is explicitly discussed as
a property of the manager. Another is to implement package contexts as an entity in the manager’s
software architecture. Having an explicit entity could allow the user to create, configure, and reference
contexts, which in turn enables some features which will be mentioned later. To address the broadness
typical for managers not concerned with package contexts, the manager provides a way to specify the
affected area for a package context or requires the consumer of a package to specify the context to
which the consumption is relative.

A manager providing explicit contexts allows an easy solution to the situation of multiple projects
requiring different package versions because each project can be relative to a different context. A way
to not provide arbitrary contexts while still solving this problem is to provide project-local contexts,
where each project created with the manager gets assigned a newly created context associated only
with the new project.

Atomic upgrades, rollbacks, and similar features can be implemented using explicit package con-
texts. For each transformation, the manager can create a new context with the transformation applied
in the new context and the old context left intact. When a way of atomically switching between the
used context is applied, e.g. changing a symbolic link, the atomic transformation can be done by
non-atomic transformation in the new context, which isn’t yet used by anything and so doesn’t affect
anything, and then by atomically switching the context.

2.1.3 Drawbacks

As the concept of a package context is always present in the package manager design, there is no real
drawback to introducing explicit contexts in terms of functionality.

However, since having the contexts explicit increases the complexity of a manager’s design, there
is a drawback of increased development time.

Also, when implemented explicitly, contexts are by their nature not optional in terms of the user’s
choice of utilized features. This can lead to a steeper learning curve for the user, which could also be
considered a disadvantage over a more implicit solution.

2.1.4 Known uses

vepkg and npm provide explicitly documented project-local contexts.

build2 provides explicit context creation with linking which allow the user to create a base context
with common content used by multiple inheriting contexts.

nix provides user-local packages and atomic package transformations using package contexts and
symbolic links.

2.2 The manager is a package
2.2.1 Problem

A package manager is a piece of software and as such it needs to be distributed to its end users. Software
distribution is itself a problem worth exploring in great detail, but for purposes of this document let’s
assume that software distribution is hard and therefore practices that reduce its complexity can often
be worth the development time.

As a piece of software, the manager also needs to be maintained. This mainly means being updated
and installed or removed.

Software distribution is simultaneously one of the main features of package managers. However,
the distribution capabilities provided by the manager can be quite limited, as it typically only needs
to support distributing packages for the specific environment it is tailored to.

2.2.2 Solution

The solution to the problem of package manager distribution is to provide the manager as a package
managed by the manager itself. This reduces the complexity of its distribution significantly since the



design of package distribution implemented by the manager is reused and reapplied for this purpose
and all its guarantees and good properties are carried over.

As a byproduct, the manager can now be installed, updated, removed, and in general reliably
maintained in a way that is well understood both by the users and the developers.

Having the manager provide itself as a package requires the manager to be implemented in such a
way that it can handle its own installation. The installation could also possibly involve building which
would put quite strong restrictions on the implementation of the manager.

A problem that arises with this pattern is the cyclical situation where a user wants to install the
manager yet the manager is required for its installation. This must be solved by a bootstrap method,
where the manager provides another way of distribution. This distribution can be very limited as it
only needs to support installing the manager itself.

As a bonus, this pattern provides the manager with a good tutorial for the users, as the first required
step of using the manager is to install it. The developers can then control the first experience of the
user because they are in control of the manager and no other package is involved in this beginning
stage yet.

2.2.3 Drawbacks

The main problem with this pattern is that the package manager must be implemented with the
feature in mind. This might have small implications for some managers but for managers which for
example distribute only from source in a certain language, this can put significant constraints on the
implementation,

It also isn’t clear that every manager would benefit from this pattern, as it is dependent on the
package management features provided. Some managers might have such a feature set that this pattern
introduces a large amount of complexity with very little benefit.

2.2.4 Known uses

npm provides itself as a package, although the usage is a bit more complicated and the typical usage
requires an additional ”meta” manager.

build2 provides itself and multiple other components of its toolchain as packages. By supporting
build-time dependencies, the manager is also well integrated into its own ecosystem.

2.3 Default values
2.3.1 Problem

Package managers are complex pieces of software that require the user to input a great amount of
configuration. Although the documentation for the options, parameters, and switches is typically pro-
vided, users can still find it difficult to understand the functionality of all the configuration parameters
provided. Some parameters don’t have to be specified, so if the user doesn’t understand them they
can leave them out. But with some parameters, the user must pick one option from many, which is a
problem for the user if they don’t understand the implications of individual values. The steep learning
curve could deter users from using complex and feature-rich managers.

2.3.2 Solution

The solution is to use default values for most of the configuration. The manager can then expand its
feature set indefinitely if it provides sensible default values for the newly introduced parameters.

The sensible choice for a value typically constitutes the value used by the majority of users or use
cases. Another option for the default is to choose the safest option, which might not be the most
common one but is the least probable to cause problems to the user.

2.3.3 Drawbacks

The default values pattern is best manifested in the situation when a user doesn’t understand a
certain option but doesn’t have to bother with it because the manager uses a default value that has
a very high chance of working correctly without the user even noticing. This advantage is also a



major drawback as the option is by design somewhat hidden from the user and thus possibly skewing
the user’s understanding of the manager. It is often the case that a configuration option is tightly
associated with a specific feature. This means that the only place where a user might find out about
a defaulted option and thus commonly also the feature associated with it is the documentation, which
is often not consulted unless it is absolutely obvious and necessary. Default values make the needed
consultation of documentation often necessary but not so obvious.

2.3.4 Known uses

Almost all software utilizes default values.

2.3.5 Related patterns

A more advanced and complex pattern in the area of default behavior is the Scanning pattern.

2.4 Scanning
2.4.1 Problem

The Default values pattern applies only to situations when a configuration parameter accepts a finite
set of values or a number. If the type of the parameter is for example a string, it is often not possible
for the developers to choose a sensible value that applies to most cases.

2.4.2 Solution

A good solution for some parameters with complicated types is to not provide a default value and
throw an error when the user doesn’t specify some value explicitly. However, a lot of configuration
passed to the manager often repeats the same values that are part of the content of the package. These
are for example the package name, version, binary name, and so on.

The manager uses a scanning tool that parses the package content and looks for the desired values.
This might be an external tool in the case of source code or a parsing library for a known format such
as JSON.

Package managers often come with their so-called manifest files which describe the package, but
this pattern is more concerned with scanning for values in the content of a package that isn’t there
explicitly for consumption by the manager.

Sometimes the user wants to use a value for an option that is related to the value found inside the
package content but is not the exact same. For this case, the manager can provide another parameter
that would specify the transformation that ought to be done to the found value.

2.4.3 Drawbacks

Scanning is more complex and involved than just picking one default value, so it makes the manager
harder to use.

The other difficulty is in the manager’s implementation complexity, as scanning might require a
lot of additional development. For example, parsing a directory structure is quite simple, but parsing
code or arbitrary text files for default values is much more difficult.

2.4.4 Known uses

tipi.build uses scanning as part of its “build by convention” design.

2.4.5 Related patterns

Default values deals with a simpler case of default configuration.



2.5 Lockfiles
2.5.1 Problem

Many managers allow users to specify a dependency without specifying the version or by providing a
version range. This means that the manager might have multiple versions of the package to choose
from.

A very common behavior is to choose the newest available version. Although any backward-
compatible version is supposed to work correctly, users sometimes wish to achieve reproducible builds.
Reproducible builds improve debugging by disallowing a dependency to change the behavior of the
project, which also ensures greater portability. They also help prevent the Dependency Confusion
Attack where an attacker releases what to the manager looks like a benign package update which
injects malicious code into its dependents.

2.5.2 Solution

A solution for reproducible builds is to use a so-called lockfile. A lockfile is a structure that contains
information about the dependency tree of the built package. This information is complete, meaning
that the whole dependency tree can be reconstructed using the lockfile.

It is common for managers to implement lockfiles as literal files which are passed as an argument
when invoking the manager.

2.5.3 Drawbacks

An obvious drawback is that lockfiles require an additional structure in the project configuration which
needs to be passed to the manager during the invocation and complicates the usage of the manager.
The passing of the lockfile can be made implicit but that in turn only hides the added complexity.

A bigger problem with this pattern is that lockfiles are possibly a solution to a symptom of a bigger
problem: a manager choosing the newest version of a package by default.

2.5.4 Known uses

Conan and npm offer lockfiles as one of their main features concerning versioning.

2.5.5 Related patterns

Baseline is a more robust solution to the problem of an updated package dependency. However, it
comes with more constraints.

2.6 Baseline
2.6.1 Problem

One approach to package version specification is for the manager to allow arbitrary version ranges and
pick the newest available version. Then a problem of unreproducible builds arises, which can be solved
by lockfiles.

From another point of view, the possibility of a new version breaking its dependents is a problem.
The existence of lockfiles can also be considered a problem, as it is a whole new mechanism that
developers need to develop and users learn to use.

Another problem related to package versions is that when a newer version of a package can cause
a dependency error requiring an additional fix, depending only on package versions when considering
compatibility is not a reliable solution.

2.6.2 Solution

When a package manager allows specifying only left-bounded version ranges while always choosing
the minimal version satisfying all dependencies, the problem of a new package dependency version
breaking the project is solved [1].

Package managers often provide global package repositories. These can be utilized to address
the problem of versioning unreliably ensuring compatibility. A way to ensure maximal compatibility



between packages in a registry is to have a CI system in the repository which triggers with any change
and builds all affected packages (dependencies and dependents) and rejects any change to the repository
which causes a build failure. For each package upgrade a new snapshot of the repository is registered.
These snapshots are called baselines. The user then specifies dependencies to the manager as relative
to some baseline and the manager resolves dependency versions to at least the value in the baseline.
This way the manager provides a mechanism for ensuring package compatibility with the option to
use newer, untested, versions of packages. Although the newer versions might still break compatibility,
they are required to be specified by the user explicitly.

2.6.3 Drawbacks

Although the Lockfiles pattern arguably introduces unnecessary complexity to a manager’s design,
Baseline comes with its own complexity and is also more involved.

Moreover, baselines, in contrast to lockfiles, cannot be avoided by the user as they must stand at
the base of dependency version specification in managers using them.

2.6.4 Known uses

From the analyzed packages only vcpkg offers baselines.

2.6.5 Related patterns

The Lockfiles pattern solves a similar problem in a more direct way.

2.7 Binary cache
2.7.1 Problem

Developers of package managers have an important design decision to make: whether to distribute
source code or binary. These types of distribution are not mutually exclusive but each has its own
incompatible advantages.

Distributing source is highly portable because each platform should be able to build binaries for
itself. Next, it might result in faster code as additional optimizations specific to the target architecture
could be applied. Lastly, when distributing source code there is no need to ensure binary compatibility
as there is no binary distributed.

Binary distribution is on the other hand faster because it doesn’t involve build time which is
especially slow in C++. For the same reason, this type of distribution is in some ways simpler for the
manager since there isn’t a need to invoke the build.

2.7.2 Solution

To get the benefits of both building from source and directly distributing binaries, the manager can
provide binary caching. When a user requests a package, the manager first looks up the package in
the cache and only if it is missing there it will invoke the build from source.

Determining whether the cache contains some package is not trivial and requires a complex solution
that ensures binary compatibility. However, the manager can always ignore the cache and build from
the source as caching is only an optimization and building always yields the correct binary.

2.7.3 Drawbacks

This pattern comes with its own set of problems to solve but no strong drawback. Caches are an
optimization and can be ignored.

2.7.4 Known uses

vcpkg, Conan, nix, and tipi.build all provide binary caching. The only manager building from source
not supporting binary caching is build2, but it too has plans to support it in the future.



3 Conclusion

We described 7 design patterns that appear in some of the most used package managers in the C++
environment. This collection of patterns can help with designing future package managers for which
there is an urgent need in C++ according to recent developer surveys.

References

[1] Russ Cox. Minimal version selection. URL: https://research.swtch.com/vgo-mvs.

[2] Standard C++ Foundation. 2022 Annual C++ Developer Survey ”Lite”. URL: https://isocpp.
org/blog/2022/06/results-summary-2022-annual-cpp-developer-survey-lite.

[3] Marcel Taeumel et al. “A Pattern Language of an Exploratory Programming Workspace”. In:
Design Thinking Research: Achieving Real Innovation. Springer, 2022, pp. 111-145.


https://research.swtch.com/vgo-mvs
https://isocpp.org/blog/2022/06/results-summary-2022-annual-cpp-developer-survey-lite
https://isocpp.org/blog/2022/06/results-summary-2022-annual-cpp-developer-survey-lite

	Introduction
	Design patterns
	Package context
	Problem
	Solution
	Drawbacks
	Known uses

	The manager is a package
	Problem
	Solution
	Drawbacks
	Known uses

	Default values
	Problem
	Solution
	Drawbacks
	Known uses
	Related patterns

	Scanning
	Problem
	Solution
	Drawbacks
	Known uses
	Related patterns

	Lockfiles
	Problem
	Solution
	Drawbacks
	Known uses
	Related patterns

	Baseline
	Problem
	Solution
	Drawbacks
	Known uses
	Related patterns

	Binary cache
	Problem
	Solution
	Drawbacks
	Known uses


	Conclusion

