GETTING EVERYTHING WRONG WITHOUT DOING ANYTHING RIGHT!

or
The perils of large-scale analysis of GitHub data

Jan Vitek

*with apologies to Mytkowicz, Diwan, Sweeney, and Hauswirth's “Producing Wrong Data Without Doing Anything Obviously Wrong!” ASPLOS'09

= Ccleste) Ermery t’"f" Olga .

A possible agenda for today

1. introductions
2. motivating question
3. large-scale corpus based analysis

4. reproducible science

INtroductions

WwWhno am 1/

My research focus on design and
implementation of programming
abstractions in areas that include
NNOﬂheaStem University real-time embedded systems,

Khoury College of Computer

and Information Sciences concurrent and distributed

FAKULTA _
INFORMAENICH
TECHNOLOGII
CVUT V PRAZE

Citizenship: CZ, CH, US
Birthday: 66/6/9

systems and scalable data
BS: U . Geneva 89 ana|ytics_
MS:U. Victoria 92
PhD: U. Geneva 99 H_'O | have published in ~120 papers
1st Position: Purdue U. ! n Programmlng Languages,
Virtual Machines, Compilers,
Current: Northeastern U. . Software Engineering, Realtime
Startups: 2 H, 0.0l computing, and Bioinformatics.
Kids: 2 | |
Dogs: 1 | enjoy beautiful code that solves
F real problems.

Research:PL+SE @ B& L.

Flexible Alias Protection ECOOP 1998
Cites: 426

Flexible alias protection is a conceptual model

of inter-object relationships which limits
the visibility of changes via

allases, mitigating the

undesirable effects of

aliasing.

Impact. Commercial use in Rust,
ECOORP test of time award

—Researcn

Integrating Typed and Untyped Code in
a Scripting Language POPL 2010

Cites: 121

Integrate untyped and typed "{ e

code in the same system .

to allow prototypes to j\

smoothly evolve into |/ “Tkj Ai\ D

robust programs. e :
related by subtyping \1 th ot dby (ke

—Researcn

The eval that men do ECOOP 2011
Cites: 282

A large-scale study of the use of
eval In JavaScript, We recorded
the behavior of 10,000 web
pages.We provide statistics

on the nature and content

of eval. A
Impact: Commercial use by Apple

T T T
Interactive PageLoad = Random

3.5MB

2.5MB

Code size

1.5MB

—Researcn

512KB

KafKa: Gradual Typing for Objects
ECOOP 2018 Cites: 21
Most gradual type systems provide distinct
quarantees, we give a formal framework
for comparing gradual anslations
type systems for

KafKa
(static)

' —Nri Surface Optional
object oneﬁted amouaos | Moo
,Orogramm/ng (gradual) Transient
/anguages, Behavioral

wn
-
O

{

Va

Mot

. . TO DO SCIENCE, BUT HOW DO GREAT QUESTION. HOW DO
Motivations S0 || S0 eoreante || oo mnk voo o2

A HYPOTHESIS, | | A HYPOTHESIS? VELL. MAYBE YoU-
THEN TEST IT. :

AND THERE
) YO\U HAVE IT!

There exists a Programming Language that is The Best

As you know, you
develop software
with the language
you have, not the 1%
language you might &
want or wish to have
at a later time.

~ D. Rumsfeld, 2004 Il

£

\\

/4

) d

Do programming languages enhance worker produetiyity?

' ' Fvaluation is a failure of the

(porograming language

& 'ﬁﬁ community

- | New languages and new

B S | | /= paradigms introduced without
a shred of scientffic evidence

"% We can evaluate the benefits
% & .0 0N a compiler on a suite of
B&. Lnrepresentative benchmarks
= put not how to evaluate the

MPhenefits of a language for

programmers

\What do we measure”?
How do we measure”?

The Iron Rolling Mill by Adolf Mvenzel

I’m looking for[¢
aquarter| |«
dropped

|~

~/€) GitHub

J

4

2

scale corpus analysi

Large

A Large Scale Study of Programming Languages and Code Quality on Github

RQ1 Are some languages more defect prone than others?

L ‘.‘ ‘ v 4 v g : \ "‘l
® i > 4\(f I y / : /
It u Baishaki Daryl Vladimir Premkumar
Ray Posnett Filikov Devanbu
UC Davis

A Large Scale Study of Programming Languages and Code Quality on Github

<> Code Pull requests 11 Projects 0 Insights

Revert "driver: unconditionally disable relaxation when linking parti...

«~ally"
This reverts commit 1cc9061.

This appears to break a clean build with certain versions of

"1ld.gold . See
https://phabricator.haskell.org/rGHC1cc9061fce42#132967.

a RyanGIScott committed 6 days ago 1 parent ab55b4d commit 44ba66527ae207ce2dd64eb2bceld656d4741f6d1

GitHub

A Large Scale Study of Programming Languages and Code Quality on Github

Methodology:

1. Acquire 800 projects written in 17 languages

Split by file according to language

Filter projects with <20 commits/language

Label commits as bug-fixing

Negative Binomial Regression to model bug-fixing commits

O K~ W

Projects contain a sequence of commits; each commit has a text explanation and

affects a number of files In various languages; commits can be labelled as bug-fixing;
I u the prevalence of bug-fixing commits is a proxy for code quality.

Intercept
log commits
log age

log size

log devs

C

C++

C#
Objective-C
Go

Java
Coffeescript
Javascript
Typescript
Ruby

Php
Python
Perl
Clojure
Erlang
Haskell
Scala

- -CRLEICEI Ly of Programming Languages and Code Quality on Github

Kutner, et al. 2004. Applied Linear Statistical Models. https://books.google.cz/books?id=XAzYCwWAAQBAJ

TypeScript
Scala Clojure
Haskell
Ruby Perl
Go CoffeeScript
SEVE Erlang
Ci Python
JavaScript
PHP C Obijective-C
C++

Reproducible science

PRIVATE

MEMBERS
OF THE
COLLEGE
ONLY

“...a single project, Google’s v8, a JavaScript project, was
responsible for all of the errors in Middleware.”
— Ray, Posnett, Filikov, Devambu

“give all of the information to help other judge the value of your contribution; not just the information that leads to a particular judgment”

o1 - R. Feynman, Cargo Cult Science, 1974

\S
A0® \ b Qv
X\© 2 o
?‘GQG ?‘e,a‘\ ?@9‘
Artifact Publication Data and code
Output Output Methods Experiment

reported Validated Validated Validated

Level of Not < — > Gold
. R |
Trust reproducible il L Standard

*Roger Peng. Reproducible research in computational science. Science, 2011

“give all of the information to help other judge the value of your contribution; not just the information that leads to a particular judgment”

- - R. Feynman, Cargo Cult Science, 1974

The authors of the original study shared their data (3.4GB) and code (700 loc R)
23 We thank them

RQ1 RQ2 RQ3 RQ4 Original Authors Repetition
o XXX
Coef P-val Coef P-val
Q Repetition failures caused by: ¢ 0.15<0.001 0.16 <0.001
Nonsensical language classification C++]| 023 <0.001 0.22 <0.001
Data discrepancies C# 0.03 - 0.03
T Missing coae Objective-C || 0.18 <0.001 0.17 0.001
}7 Go || -0.08 - -0.11
Java || -0.01 - -0.02
Coffeescript || -0.07 - 0.05
Javascript || 0.06 <0.01 0.07 <0.01
Typescript || -0.43 <0.001 -0.41 <0.001
Ruby || -0.15 <0.05 0.13 <0.05
Php || 0.15 <0.001 (& —> 0.13 0.009
Python 0.1 <0.01 0.1 <0.01
D_ Perl || -0.15 - -0.11 o
Clojure || -0.29 <0.001 -0.31 <0.001
‘ ‘ \ Erlang || 0 - 0
Haskell || -0.23 <0.001 -0.24 <0.001
& Scala || -0.28 <0.001 -0.22 <0.001

Krishnamurthi, Vitek. The real software crisis: repeatability as a core value. CACM’ 15 ntips://dol.org/10.1145/2658987

We focused on RQ1 for a reanalysis as it was mostly repeatable.

The issues we found carry over to the rest of the RQs.

Validate data acquisition

Data

Validate data cleaning

Statistics

Validate data analysis

Conclusions

SEANALY SIS

We focused on RQ1 for a reanalysis as it was mostly repeatable.

The issues we found carry over to the rest of the RQs.

SISA IVNY e

- Top three projects in each language

Projects

C inux, git, php-src

C++ node-webkit, phantomjs, mongo

C# SignalR, SparkleShare, ServiceStack
Objective-C AFNetworking, GPUImage, RestKit
Go docker, lime, websocketd

Java storm, elasticsearch, ActionBarSherlock
CoffeeScript coffee-script, hubot, brunch
JavaScript bootstrap, jquery, node
TypeScript bitcoin, litecoin, gBittorrent

Ruby rails, gitlabhq, homebrew

Php laravel, Codelgniter, symfony
Python flask, django, reddit

P itolite, showdown, rails-dev<box

htTable, leiningen, clojurescript
Erla

ChicagoBoss, cowboy, couc
andoc, yesod, git-annex
Scala Play?20, spark, scala

Haskell

No normalization for lines of code or commits across languages!

Bug-fixing commits

10* 10*° 10° 10°°
Commits

729 projects and 1.5 million commits. Data has 148 un-analysed projects.
Found 47K authors vs 29K reported. Explained by paper using committer instead of developer.
80.7 million lines of code. A difference of 17 million SLOC unexplaimed.

No control for duplication! T,pje 1: Top three projects in each language

C

C++ -webkit, phantomjs, mongo

C# SignalR, SparkleShare, ServiceStack
Objective-C AFNetworking, GPUImage, RestKit
Go I

Java arSherlock
CoffeeScri I

JavaScript ,

TypeScript bitcoin, litecoin, gBittorrent

Ruby rails, gitlabhq, homebrew

Php laravel, Codelgniter, symfony
Python flask, django, reddit

Perl gitolite, showdown, rails-dev-box
Clojure LightTable, leiningen, clojurescript
Erlang ChicagoBoss, cowboy, couchdb
Haskell pandoc, yesod, git-annex

Scala Play?20, spark, scala

No control for duplication! litecoin, mega-coin,

1.86% of data is duplicate commits rr!em_oryco.m, bitcoin, |
bitcoin-qt-i2p, anoncoin,

smallchange, primecoin,
terracoin, zetacoin,
datacoin, datacoin-hp,
freicoin, ppcoin,
namecoin, namecoin-gt,
namecoing, ProtoShares,
QGIS, Quantum-GIS,
incubator-spark, spark,
sbt, xsbt, Play20,
playframework, ravendb,
SignalR,
Newtonsoft.Json, Hystrix,
RxJava, clojure-scheme,
clojurescript

Lopes, Maj, Martins, Yang, Zitny, Sajnani, Vitek. Déja Vu: A Map of Code Duplicates on GitHub. OOPSLA'17 https://doi.org/10.1145/3133908

Truncated datal

20~-
15=

10~-

Percentage missing commits

1 1
~ @ o * ST ¢, S~ >
QL & AN Q L X Q
§$é<§s‘v §$@*§@6"§Q §Q
Q@Oz? F @ O g & @
S & & $
@) O

Out of 729 projects, 618 could be downloaded, 423 could be matched (due to owner missing)
Found 106K missing commits (~20% of data)

Erroneous Language Recognition!

First commit for TypeScript @ 2003-03-21 TypeS C r‘ pt

Paradigm Multi-paradigm: scripting,
object-oriented, structured,
imperative, functional, generic

Designed by Microsoft
Developer Microsoft

First appeared 1 October 2012; 6 years

. ts are translation files!

471 projects labeled as TypeScript, only 16 have code. Commits 10K=>3K.
I_argeST prOjeCTS (typescript-node-definitions, DefinitelyTyped, tsd) Al declarations with no code
(34.6% of remaining commits).

Erroneous Language Recognition!
V8 is tagged as a JavaScript project

Commits
C | 16
This is correct and it is the largest JavaScript project: Cet | 7
Python | 488
JavaScript | 2,907

Most JavaScript code is test!

.C .cc .CPP .c++ .cp .cxxand .h areallignored, only .cpp is used

Checked GitHub Linguist, as of 2014, able to recognize header files and all C++
16.2% of files are tests (801,248 files).

Multiple hypothesis testing

A common mistake in data-driven software engineering

16 p-Vals =>
family-wise error rate=1—(1-.05)16= .56
Bonferroni divides cutoff by the num. of hypotheses

False Discovery Rate (FDR) allows an average
pre-specified proportion of false positives in the
list of “statistically significant” tests

Original Authors

(a) FSE [26] (b) cleaned data | (c) pV adjusted
Coef P-val Coef P-val FDR Bonf
Intercept || -1.93 <0.001 -1.93 <0.001 - -
log commits 2.26 <0.001 0.94 <0.001 - -
logage || 0.11 <0.01 005 <001 | - -
log size 0.05 <0.05 0.04 <0.05 - -
log devs 0.16 <0.001 0.09 <0.001 - -
C 0.15 <0.001 0.11 0.007 0.017 0.118
C++ 0.23 <0.001 0.23 <0.001 <0.01 <0.01
C# 0.03 - -0.01 0.85 0.85 1
Objective-C 0.18 <0.001 0.14 0.005 0.013 0.079
Go || -0.08 - -0.1 0.098 0.157 1
Java || -0.01 - -0.06 0.199 0.289 1
Coffeescript || -0.07 - 0.06 0.261 0.322 1
Javascript 0.06 <0.01 0.03 0.219 0.292 1
Typescript || -0.43 <0.001 = = = =
Ruby (| -0.15 <0.05 -0.15 <0.05 <0.01 0.017
Php 0.15 <0.001 0.1 0.039 0.075 0.629
Python 0.1 <0.01 0.08 0.042 0.075 0.673
Perl || -0.15 - -0.08 0.366 0.419 1
Clojure || -0.29 <0.001 -0.31 <0.001 <0.01 <0.01
Erlang 0 - -0.02 0.687 0.733 1
Haskell || -0.23 <0.001 -0.23 <0.001 <0.01 <0.01
Scala || -0.28 <0.001 -0.25 <0.001 <0.01 <0.01

Reyes, et al. 2018. Statistical Errors in Software Engineering Experiments |CSE nttps://doi.org/10.1145/3180155.3180161

Shaffer. 1995. Multiple Hypothesis Testing. Ann.Rev.of Psychology. doi:10.1146/annurev.ps.46.020195.003021

Benjamini, Hochberg. 1995. Controlling the False Discovery Rate. J.Royal Statistical Society. https://doi.org/10. 2307/2346101

Eg reg |OUS Label I | ng Erro rs' Extend ? I'macro to handle optional timeout anlue.
Which should be labeled bug-fixing? v deor 0 0

. rvirding committed on Nov 4 2010

omments, add new context helper, made helpers more consistent
P master ©v233 .. 01

. casademora committed on Aug 23 2010 1 parent
I:a|Se posm\/e rate 36 0/0 Verifying inheritance is working OK; closes #153
P master © v7.01 .. 33.
False negative rate: 11% 8 joogard committed on Sep 22 2012

Selected randomly 400 commits; 10 independent developers
Each commit labelled by 3 experts. 2+ votes => bug fixes. 54% unanimous.

Meta-analysis of FP: (1) Substrings (2) Non-functional: e.g., changes to variable names (3) Comments
(4) Feature enhancements (5) Mismatch: e.g., “this isn't a bug” (6) Features with unclear messages

Mockus, Votta. 2000. Identifying Reasons for Software Changes Using Historic Databases. (CSM. https://doi.org/10.1109/CSM.2000.883028
..., Filkov, Devanbu. 2009. Fair and Balanced?: Bias in Bug-fix Datasets. FSE. nttps://doi.org/10.1145/1595696.1595716

Original Authors Reanalysis
(a) FSE [26] (b) cleaned data | (c) pV adjusted (e) bootstrap
Coef P-val Coef P-val FDR Bonf Coef sig.
C++ 0.23 <0.001 0.23 <0.001 <0.01 <0.01 0.16 *

O

V.U V.U 4L vV.Uv vV.Uv i v

N 4 “ FaNia¥
v || ve.vu || veda = Ve.v su | vvvvv a || V.U 1
hd N N PaNPLN N 4NN~ N NN~ - N N
JLLV(J. || v.Uv 1l || V.V 4 V.V

COffeeouiPL

-0.15 <0.05 -0.15 <0.05 <0.01 0.017 ‘

|M|M“l —
(e - - - -
Clojure || -0.29 <0.001 <0.01 <0.01 -0.15
Ellalls v “v.us 0.007 0.755 1 “0.01
Haskell || -0.23 <0.001 -0.23 <0.001 <0.01 <0.01 -0.12 *

Bootstrap:

1) sample projects with replacement;

2) #bug-fixing commits generated as B*~Binom(size=B,prob=1-FP)+Binom(size=C—-B, prob=FN),
3) analyzed the resampled dataset with NBR. Repeat 100K times.

' ' | 2 600
Egregious Labelling Errors! £
2 e
£ 400 T G
_Ig | [Clojure
200
0
Down with p-values 0 200 400 600 800
commit

P-values are largely driven by # of observations [1].

Small p-values not necessarily practically important [2].

Practical significance assessed by model-based prediction intervals [3], which predict future commits.
Similar to confidence intervals in reflecting model-based uncertainty.

Differ in that they characterize plausible range of values of future individual data points.

Halsey, et al. 2015. The fickle P-value generates irreproducible results. Nature Methods. nitps:/doi.org/10.1038/nmeth. 3288
Colguhoun. 2017. The reproducibility of research and the misinterpretation of p-values. nips://doi.org/10.1098/1s0s. 171085
Kutner, et al. 2004. Applied Linear Statistical Models. nttps://books google.cz/books?id=XAzYCwAAQBAJ

No Relevance to RQ! fixing options.

39 master

. sinclairzx81 committed on Aug 30 2013

this.compiler.settings.outFileOption = '/outFileOption.js’'

- this.compiler.settings.outFileOption = 'out.js’';

How many errors are affected by features of the language”?

Uncontrolled Effects!

08 . :~.....-
0.6 HErE e
0.4
. . . 0.2
Developers influencing multiple "
projects (45K developers, 10% of E 08
them => 50% of the commits) E Tl e .
Q 0.6 i was e
S04 :
Some tasks, such as system D 0.2
programming, may be inherently @
T ..
more error prone than 0.8 s
. c
Commercial vs opens source © 04
8 0.
)
Loz
Stars as a selection criteria for
projects 0810 .
0.6 i
0.4
0.2

0O 50 100 1500 50 100 1500 50 100 150
Project lifetime (months)

A Large Scale Study of Programming Languages
and Code Quality in Github

Baishakhi Ray, Daryl Posnett, Vladimir Filkov, Premkumar Devanbu
{bairay@, dpposnett@, filkov@cs., devanbu@cs.}ucdavis.edu
Department of Computer Science, University of California, Davis, CA, 95616, USA

ABSTRACT

What is the effect of programming languages on software qual-
ity? This question has been a topic of much debate for a very long
time. In this study, we gather a very large data set from GitHub
(729 projects, 80 Million SLOC, 29,000 authors, 1.5 million com-
mits, in 17 languages) in an attempt to shed some empirical light
on this question. This reasonably large sample size allows us to use
a mixed-methods approach, ing multiple ion model-
ing with visualization and text analytics, to study the effect of lan-
quage features such as static 1.s. dynamic typing, strong v.s. weak
typing on software quality. By triangulating findings from differ-
ent methods, and controlling for confounding effects such as team
size, project size, and project history, we report that language de-
sign does have a significant, but modest effect on software quality.
Most notably, it does appear that strong typing is modestly better
than weak typing, and among functional languages, static typing is
also somewhat better than dynamic typing. We also find that func-
tional languages are somewhat better than procedural languages. It
is worth noting that these modest effects arising from language de-
sign are overwhelmingly dominated by the process factors such as
project size, team size, and commit size. However, we hasten to
caution the reader that even these modest effects might quite possi-
bly be due to other, intangible process factors, e.g., the preference
of certain personality types for functional, static and strongly typed
languages.

Categories and Subject Descriptors

3 [PROGRAMMING LANGUAGES]: [Language Constructs
and Features)

General Terms
Experi

Keywords

programming language, type system, bug fix, code quality, empiri-
cal research, regression analysis, software domain

Permission to make digtal or hard copies of all or part of this work for personal o
classroom use is gr: provided that copies are not made or distributed
for profit or com and that copies bear this notice and the full citation
on the first page. Copy

must be honored. Abstract

to post on servers or to redistribute to IM~ requires prior ~pu.m permission and/or a
fee. Request permissions from Permissions@acm.org,

FSE’14, November 16-21, 2014, Hong Kong, China
i/l4/| 1.

Copyright 2014 ACM 978-1-4503-3056 .$15.00
http://dx.doi.org/10.1145/2635868.2635922

1. INTRODUCTION

A variety of debates ensue during discussions whether a given
programming language is “the right tool for the job". While some
of these debates may appear to be tinged with an almost religious
fervor, most people would agree that a programming language can
impact not only the coding process, but also the properties of the
resulting artifact

Advocates of strong static typing argue that type inference will
catch software bugs early. Advocates of dynamic typing may argue
that rather than spend a lot of time correct c
errors arising from sound, conservative static type checking algo-
rithms in compilers, it’s better to rely on strong dynamic typing to
catch errors as and when they arise. These debates, however, have
largely been of the armchair variety; usually the evidence offered
in support of one position or the other tends to be anecdotal.

Empirical evidence for the existence of associations between code
quality programming language choice, language properties, and us-
age domains, could help developers make more informed choices

Given the number of other factors that influence software en-
gineering outcomes, obtaining such evidence, however, is a chal-
lenging task. Considering software quality, for example, there are
a number of well-known influential factors, including source code
size [11], the number of developers [36, 6], and age/maturity [16].
These factors are known to have a strong influence on software
quality, and indeed, such process factors can effectively predict de-

lities [32].

One approach to teasing out just the effect of language prop-
erties, even in the face of such daunting confounds, is to do a
controlled experiment. Some recent works have conducted exper-
iments in controlled settings with tasks of limited scope, with stu-
dents, using languages with static or dynamic typing (based on ex-
perimental treatment setting) [14, 22, 19]. While type of controlled
study is “El Camino Real” to solid empirical evidence,another op-
portunity has recently arisen, thanks to the large number of open
source projects collected in software forges such as GitHub.

GitHub contains many projects in multiple languages. These
projects vary a great deal across size, age, and number of devel-
opers. Each project repository provides a historical record from
which we extract project data including the contribution history,
project size, authorship, and defect repair. We use this data to deter-
mine the effects of language features on defect occurrence using a
variety of tools. Our approach is best described as mixed-methods,
or triangulation [10] approach. A quantitative (multiple regression)
study is further examined using mixed methods: text analysis, clus-
tering, and visualization. The observations from the mixed methods
largely confirm the findings of the quantitative study.

TRUSTED INSIGHTS FOR COMPUTING'S LEADING PROFESSIONALS ACM.org | Join ACM | About Communications | ACM Resources | Alerts & Feeds [B B

Northeastern University Library

COMMUNICATIONS

ACM

HOME

SIGN IN

Search

CURRENTISSUE | NEWS | BLOGS | OPINION | RESEARCH | PRACTICE | CAREERS | ARCHIVE VIDEOS

Home / Magazine Archive / October 2017 (Vol. 60, No. 10) / A Large-Scale Study of Programming Languages and Code... / Full Text

A Large-Scale Study of Programming Languages and Code
Quality in Github

By Baishakhi Ray, Daryl Posnett, Premkumar Devanbu, Vladimir Filkov
Communications of the ACM, October 2017, Vol. 60 No. 10, Pages 91-100

10.1145/3126905
Comments

vEwas: 2 []

Credit: Getty Images

confusion is modestly better than allowing it, and

‘What is the effect of programming languages on software quality?
This question has been a topic of much debate for a very long
time. In this study, we gather a very large data set from GitHub
(728 projects, 63 million SLOC, 29,000 authors, 1.5 million
commits, in 17 languages) in an attempt to shed some empirical
light on this question. This reasonably large sample size allows us
to use a mixed-methods approach, combining multiple
regression modeling with visualization and text analytics, to
study the effect of language features such as static versus
dynamic typing and allowing versus disallowing type confusion
on software quality. By triangulating findings from different
methods, and controlling for confounding effects such as team
size, project size, and project history, we report that language
design does have a significant, but modest effect on software
quality: Most notably, it does appear that disallowing type

g is also somewhat

better than dynamic typing. We also find that fu C ACM 201 7 an procedural
languages. It s worth noting that these modest of perwhelmingly

Baishaki

Ray Posnett

SIGN IN for Full Access

User Name
Password

» Forgot Password?
» Create an ACM Web Account

SIGN IN

ARTICLE CONTENTS:
Abstract

. Introduction

. Methodology

. Results

. Related Work

. Threats to Validity

. Conclusion
Acknowledgments
References
Authors
Footnotes

Viladimir
Filikov

UC Davis

Daryl

Premkumar
Devanbu

/P
~ Hacker News e
A4

A Largt¢
132 point

luu on N

47

Thecla

“Most r
is also
languat

But hoy

The auf
shell, a
have s(

They tt
open is
techniq

After di
commit

That gi
somew

The tat
also eq
is the s

They tt

Ifind tl
Perl an
someth
commu

For exe
worst [i
we hav
documi
verifica
tests (1
Quickcl

P¢

A
C

Ce

C|

SOf

4} An

The

The poj
and I 1i]
some g
basicall

checkir

Eric Elliott

Make some magic. #JavaScript

Jun 4,2016 - 5 min read

r

Less (
guage

Posted on J

With &
be so|

less-¢

Functional

tweeted ai

Functional Software .NET R Tk FeLent

Functional Programming .NET Software with F# /FSharp and .NET

(&~ - Johan Jeuring
’ @johanjeuring

Statically-typ

A Large-Scal
Languages a

A L

Whi
In tt
atte

That problem inspired me to do some investigation.

fmn that aluas

dhain funma a dada analisaia alda Tha

v
Peter Marreck
Follow v
¥ @pmarreck

Replying to @pmarreck @SusanPotter

“Functional languages have a smaller
relationship to defects than other language
classes such as procedural languages” — A
Large Scale Study of Programming
Languages and Code Quality in Github,
m.cacm.acm.org/magazines/2017

3EBOOM 3&

Correlation is not Causation

Resultl Some languages have a
greater association with defects than
others, although the effect is small,

— Ray, Posnett, FHlikov, Devambu

e i "

| WANT TO
BELIEVE

The first principle is that you must not fool yourself—and you are the easiest person to fool. So you have to be very careful about that.
After you’ve not fooled yourself, it’'s easy not to fool other scientists. You just have to be honest in a conventional way after that.

— R. Feynman, Cargo Cult Science, 1974

Correlation is not Causation

Sleeping with one's shoes on is strongly
correlated with waking up with a headache.

Therefore, sleeping with one's shoes on
causes headache.

Correlation is not Causation

“..They found language design did have a signicant, but modest effect on
software quality.”

“... The results indicate that strong languages have better code quality
than weak languages.”

“...functional languages have an advantage over procedural languages.”

CORRELATION IMPUED| | STANISTICS CLass. | | CLASS HELPED.
CAVSATION.) NOwW I DON'T; \

A8

| Cites | Self |

WELL, MAYBE.

/

Cursory
Methods
Correlation

| WANT TO
BELIEVE

Causation

T USED T THINK, | THEN T TOOK A | | SOUNDS LIKE THE

]

.
B . g We
@y Cornell Umver51ty the Simons Foundation a

arXiv.org > c¢s > arXiv:1901.10220

(Help | Advanced sear

Computer Science > Software Engineering

On the Impact of Programming Languages on Code Quality

Emery D. Berger, Celeste Hollenbeck, Petr Maj, Olga Vitek, Jan Vitek
(Submitted on 29 Jan 2019)

This paper is a reproduction of work by Ray et al. which claimed to have uncovered a statistically significant association between
eleven programming languages and software defects in projects hosted on GitHub. First we conduct an experimental repetition,
repetition is only partially successful, but it does validate one of the key claims of the original work about the association of ten
programming languages with defects. Next, we conduct a complete, independent reanalysis of the data and statistical modeling
steps of the original study. We uncover a number of flaws that undermine the conclusions of the original study as only four
languages are found to have a statistically significant association with defects, and even for those the effect size is exceedingly
small. We conclude with some additional sources of bias that should be investigated in follow up work and a few best practice
recommendations for similar efforts.

Comments: 21 pages
Subjects: Software Engineering (cs.SE)
Cite as: arXiv:1901.10220 [cs.SE]
(or arXiv:1901.10220v1 [cs.SE] for this version)

@ShriramKMurthi

q ShriramKrishnamurthi (= lowing -
7 Folliowing

The "debunking" paper by @emeryberger,
@j_v_66, @olgavitek, and others, of that
"programming languages and code quality”
study, hits arXiv. Expect fireworks.

The R Register’

Biting the hand that feeds IT

NTRE SOFTWARE

SECURITY DEVOPS BUSINESS PERSONAL TECH SCIENCE

Software
Boffins debunk study claiming certain
Boffins debunk study claiming certain languages (cough, C, Pt Ianguages (cough’ C’ PHP’ JS"') Iead
Hard evidence that some coding lingo encourage flaws remains elt to more buggy code than OtherS

Hard evidence that some coding lingo encourage
flaws remains elusive

By Thomas Claburn in San Francisco 30 Jan 2019 at 21:45 154(,) SHARE V¥

FSE

...l don’t understand why ...use a Bonferroni correction, which is generally overly
conservative. Why not use a Benajamini-Hotchberg?...

...Mmissing code and data...

...largest source of contrasting results...comes from the bootstrapping method.
This was clever. However, it relies on the really low bug-labeling accuracy data...a
larger sample of rated messages, with multiple raters, would be worthwhile...

ICSE

....Hence, the reanalysis actually confirmed the original conclusion...

... The current study produces essentially the same result ... that
some of the language coefficients reported to be statistically
significant in the original paper, lose statistical significance now, given
some differences in operationalization or analysis...

... The paper appears politically motivated...

| WANT TO
BELIEVE

The first principle is that you must not fool yourself—and you are the easiest person to fool. So you have to be very careful about that.
After you’ve not fooled yourself, it’'s easy not to fool other scientists. You just have to be honest in a conventional way after that.

— R. Feynman, Cargo Cult Science, 1974

Select project on features and not GH stars
. Assume data is corrupt

. Check for duplicates/clones

. Syntactip techniques are error—prone

| Sharég” ‘data and code on public repositories
Beoome (or marry) a statistician
0. Don’t trust, verify

3
2
2
4
94
o.
.
8
9.
1

GETTING EVERYTHING WRONG WITHOUT DOING ANYTHING RIGHT!

or
The perils of large-scale analysis of GitHub data

Nttps://github.com/PRL-PRG/TOPLAS19_Artifact

= (Ccleste

Rl Crery Pifgy Oloa l Jan

GETTIﬁG EVERYTHING WRONG WITHOUT DOING AN

sl
-
- -
X
%

=" :

e’ % ‘
o Z I 5 -
o N) ;

p .,

Opinions ' In this talk are.mine and mine alene, my co-autiiors may or may not agree, funding & /W prove

