
NPRG075
Unexpected perspectives on types

Tomáš Petříček, 309 (3rd floor)



 |

Lectures: Monday 12:20, S7



petricek@d3s.mff.cuni.cz
https://tomasp.net @tomaspetricek

https://d3s.mff.cuni.cz/teaching/nprg075

mailto:petricek@d3s.mff.cuni.cz
https://tomasp.net/
http://twitter.com/tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg075

Beyond types
Recent developments

Convergences

and divergences
ML brings together
data types, abstract
types and checking

End of the history?

Convergences

and divergences
ML brings together
data types, abstract
types and checking

End of the history?

Developments in new
directions in
engineering and
mathematics!

Types
Mathematical connections

Types
Mathematical connections

 Type constructors as algebraic operations
 Proofs in propositional & predicate logic
 Linear logic and modal logics
 Types and cartesian closed categories

Are these two type

definitions equivalent?

type Contact =

 | Email of string

 | Phone of digits

 | Both of string * digits

type Customer =

 { Name : string

 Contact : Contact }

Example
Can one represent some

values the other cannot?

type Option<'T> =

 | Some of 'T

 | None

type Customer =

 { Name : string

 Phone : Option<digits>

 Email : Option<string> }

Calculating with types
Type constructor algebra

Record behaves as or
Unions behave as or
Functions A->B behave as
Unit type is and void (never) is

A ∗ B A × B

A + B A ∪ B

BA

1 0

Usual algebraic laws work!

 and
A ∗ (B + C) = A ∗ B + A ∗ C
A ∗ 1 = A A ∗ 0 = 0

Calculating with types

Contact = (Phone ∗ Email) + Email + Phone

Customer1
= Name ∗ Contact
= Name ∗ ((Phone ∗ Email) + Email + Phone)

Customer2
= Name ∗ (Phone + 1) ∗ (Email + 1)
= Name ∗ ((Phone + 1) ∗ Email + (Phone + 1) ∗ 1)
= Name ∗ ((Phone ∗ Email) + Email + Phone + 1)

What else works?
Binary trees

Derivative of a binary tree?

Treat as the variable
btree = leaf + btree ∗ btree

btree

Derivatives
Rules in case you forgot:
tinyurl.com/nprg075-diff

http://tinyurl.com/nprg075-diff

Derivatives and inverses
Derivative of a binary tree

Steps for iterating over containers
Recursively

btree = leaf + (btree)2

btree =′ 2 ∗ btree

2 ∗ (2 ∗ (2 ∗ …))

Can define the inverse!
Works only in linear logic

, i.e. a function that consumes a value
, i.e. one direction of equality

A =−1 A⊸ 1
(A ×−1 A) ⊸ 1

Types
Curry-Howard isomorphism

Miraculous link?
Types in programming are
propositions in logic!

Programs are proofs!

Not that surprising..

Hard work to make it fit

Same origins in
foundations of
mathematics

Curry-Hoard isomorphism
Types as propositions

Function corresponds to implication

Product corresponds to conjunction

Union corresponds to disjunction

A → B

A × B A ∧ B

A + B A ∨ B

Proofs are programs

A well-typed program of type is a proof of

Write program to show that a property holds!

A A

Theorem provers
Alf, Coq, Agda & more

Construct proofs by
interactively creating
programs

Show resulting
program (Agda) or list
of interactions (Coq)

Programs can run too

Programs as proofs
Function composition

Proposition: ((A → B) ∧ (B → C)) → (A → C)

Program as proof: λ(f , g).λa.g(fa)

Distributivity

Proposition: A ∧ (B ∨ C) → (A ∧ B) ∨ (A ∧ C)

Program as proof:
λ(a, inl b).inl (a, b)
 λ(a, inr c).inr (a, c)

Inference rules for types and logic

Language design
Importing ideas via maths

 Simplifying types using algebraic laws
 Making sense of units and empty types
 Types inspired by linear and modal logic?
 Types for universal and existential quantifiers?

Linear types
Variable must be

used exactly once!

Resource usage in
programming!

Avoid aliasing, efficient
memory management

Generalizations to
control sharing

Types for modal logics
Necessity and possibility

 - possibility - in a possible world
 - necessity - all possible worlds

⋄A
□A

Distributed systems
Value , address , mobile code
Axiom - run mobile code to get value
Axiom - take address of local value
Axiom - address is mobile

A ⋄A □A
□A → A

A → ⋄A
⋄A → □ ⋄ A

Dependent types
Quantifiers as type constructors

Universal quantification

Dependent function (x:A) -> B(x)
Existential quantification

Dependent pair (x:A) * B(x)

Π ​B(x)x:A

Σ ​B(x)x:A

Programming languages
Origins in theorem provers
Dependently-typed languages like Coq, Idris and Agda
Some aspects expressible in Haskell, Scala

Using with dependent types
Capture precise information

Vector of a known length Vec (n:int) A
Other properties, like sortedness of a list

Programming with fancy types

Dependent pair and function

vectWithLength : (n:int) * Vec n string

initVector : (x:int) -> (v:A) -> Vec x A

Types
Engineering perspectives

Demo
Checking weather in F#

Type providers
What is a type provider?

Extension run at compile-time
Can run arbitrary code
Generates classes with members

What can they be used for?
Infer structure of JSON, XML, CSV
Import explicit database schema
Interface with a foreign API

Static type checking?
Type error on a train!

More useful when external
service changes format

Well-typed programs

do not go wrong?

Except when the world
breaks assumptions

about the schema

Types
Engineering perspective

 Types have to be useful, not always right
 Even unsound types help software engineers
 Invaluable for tooling (completion, checking)
 Documentation and structuring mechanism

TypeScript types
Unsound because of
'any', covariance,
unchecked imports

Checking works

well enough!

More reliable editor
auto-completion

Demo
Type providers in The Gamma

The Gamma design
Iterative prompting

Do everything via a type provider
Construct SQL-like queries & more
What are the limits of this?

Type provider tricks
Lazy type generation for "big" types
Parameterized (dependent) providers
Fancy types for the masses

Fancy types for the masses
Row types

​

Γ ⊢ e.drop f ​ : [f ​ : τ ​, … , f ​ : τ ​, f ​ : τ ​, … , f ​ : τ]i 1 1 i−1 i−1 i+1 i+1 n n

Γ ⊢ e : [f ​ : τ ​, … , f : τ ​]1 1 n n

Embed as classes

​

Γ ⊢ e.drop f ​ : C ​i 2

Γ ⊢ e : C ​1

​

fields(C ​) = {f ​ : τ ​, … , f ​ : τ ​}1 1 1 n n

fields(C ​) = {f ​ : τ ​, … , f ​ : τ ​, f ​ : τ ​, … , f ​ : τ ​}2 1 1 i−1 i−1 i+1 i+1 n n

Conclusions
Unexpected perspectives on types

Engineering and
mathematical views
Complementary ways of
designing & evaluating

Import ideas using maths,
prove them correct

Adapt ideas for engineering
purpose, show they work

Reading
When Technology Became Language:
The Origins of the Linguistic Conception
of Computer Programming

From or davidnofre.com direct link

What to read and how
The birth of programming languages
Dramatic change in thinking!
Longer, so read what you like...

https://www.davidnofre.com/
https://pure.uva.nl/ws/files/2419813/154677_Alberts_Nofre_Priestly_Technol_Culture_55_1_2014.pdf

Conclusions
Unexpected perspectives on types

Many ideas imported through mathematics!
Dependent, linear and modal types
Making it work in practice is a challenge

Tomáš Petříček, 309 (3rd floor)



 |



petricek@d3s.mff.cuni.cz
https://tomasp.net @tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg075

mailto:petricek@d3s.mff.cuni.cz
https://tomasp.net/
http://twitter.com/tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg075

References (1/2)
Curry-Howard and dependent types

Wadler, P. (2015). . ACM
Magnusson, L., Nordström, B. (1994)..

. TYPES
Murphy VII, T (2008). . PhD Thesis
Walker, D. (2004). . MIT

Type providers & related

Petricek, T. et al. (2016).
. PLDI

Petricek, T. (2017). .
Proceedings of ECOOP
Wand, M. (1991).

. Information and Computation

Propositions as Types
The Alf proof editor and its

proof engine. Types for Proofs and Programs
Modal Types for Mobile Code

Substructural type systems

Types from data: Making structured data
first-class citizens in F#

Data exploration through dot-driven development

Type inference for record concatenation and
multiple inheritance

https://homepages.inf.ed.ac.uk/wadler/papers/propositions-as-types/propositions-as-types.pdf
https://sci-hub.se/https://link.springer.com/chapter/10.1007/3-540-58085-9_78
http://tom7.org/papers/modal-types-for-mobile-code.pdf
https://mitpress-request.mit.edu/sites/default/files/titles/content/9780262162289_sch_0001.pdf
http://tomasp.net/academic/papers/fsharp-data/fsharp-data.pdf
http://tomasp.net/academic/papers/pivot/pivot-ecoop17.pdf
https://www.sciencedirect.com/science/article/pii/089054019190050C

References (2/2)
Algebraic types

McBride, C. (2001).
. Online (unpublished draft)

Abbott, M., et al. (2005). .
Fundamenta Informaticae
Petricek, T. (2013).

. Online (blog post)
Marshall, D., Orchard, D. (2022). .
Proceedings of ECOOP

The Derivative of a Regular Type is its Type of
One-Hole Contexts

d for Data: Differentiating Data Structures

Power of mathematics Reasoning about
functional types

How to Take the Inverse of a Type

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=4286bcc299ab34b0581cbd62d6241794fc9052de
http://www.strictlypositive.org/dfordata.pdf
http://tomasp.net/blog/types-and-math.aspx/
https://starsandspira.ls/docs/ecoop22-draft.pdf

