
NPRG075
Close look at past and today's programs

Tomáš Petříček, 309 (3rd floor)



 |

Lectures: Monday 12:20, S7



petricek@d3s.mff.cuni.cz
https://tomasp.net @tomaspetricek

https://d3s.mff.cuni.cz/teaching/nprg075

mailto:petricek@d3s.mff.cuni.cz
https://tomasp.net/
http://twitter.com/tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg075

Close reading
Two perspectives

Critical code studies

Interpreting the meaning of
code, software or systems

in socio-historical context

 Attention to detail

 Variable names

 Making broad points

 Labyrinths in culture

Two perspectives on programs
Complementary science

Use history & philosophy to
answer questions science
itself neglects

 Attention to detail

 How exactly did it work

 Making those relevant

 New mode of interaction

// Your first C++ program

#include <iostream>

int main()

{

 std::cout << "Hello World!\n";

 return 0;

}

Close reading
"Close reading is the
careful, sustained
interpretation of a brief
passage of a text"

What can we learn?

Not always educational
start (Java, Haskell)

Reference to a long-
term hacker culture

Close reading
Programming language design

 Understand socio-historical context
 Design for better social & cultural use?
 Understand lost ideas from the past
 Recover and adapt what may be useful!

Critical code studies
Closer look at code

Hello World in Piet
Why look at esoteric
languages?

We must not just observe
nature in the raw,
but also
"twist the lion's tail" to get at
hidden insights

May reveal facts about
normal languages too!

>++++++++[<+++++++++>-]<

.>++++[<+++++++>-]<+.+++

++++..+++.>>++++++[<++++

+++>-]<++.------------.>

++++++[<+++++++++>-]<+.<

.+++.------.--------.>>>

++++[<++++++++>-]<+.

The meaning of programs
Speaking code
"Like all codes, [source code] is only
interpretable within the context of
the overall network of relations that
make its operations unstable."

Meaning of code
Meaning for the machine

Relies on technological context - compilers, specification
Meaning for a human reader

Relies on socio-cultural context

Multiple levels of meaning

Mutual influences
Social shapes technical

Programming reflects our
thinking about the world

e.g. division of labour

Technical shapes social

Abstractions define how
we think about software

e.g. information hiding

Foo, bar, baz, ...
(Lennon, 2018)

Cultural pointer

Akin to programming
language pointers

Marks work as
belonging to a
particular culture

Foo, bar, baz...
As cultural pointers

 Metasyntactic variable / meaning placeholder
 Variable names and comments are for humans
 Neither nor AbstractSingletonProxyFactoryBean
 ARPANET and Request For Comments (RFCs)

x

Close look at UNIX 6
Process switching function

Released in 1975 for PDP-11
What can we learn about it?
tinyurl.com/nprg075-unix

Close reading UNIX code
Variable names: i, n, p, rp
"set up his segmentation registers"
"You are not expected to understand this."

https://github.com/memnoth/unix-v6/blob/master/sys/ken/slp.c#L264

You are not expected to understand this
The real problem is that we didn't
understand what was going on either.

The savu/retu mechanism (...) was
fundamentally broken (...).

[It] worked on the PDP-11 because its
compiler always used the same context-
save mechanism (...).
[Eventually we]
redid the coroutine control-passing primitives altogether,
and
this code section,

and the comment, passed into history.

10 PRINT
Cultural context of

a BASIC one-liner

The birth of
microcomputers and
tinkerer culture

Randomness and
variations of the pattern

Recreating the one-liner in
other systems

Critical code studies
Ideas for programming

 What socio-technical context design uses?
 Design for hackers or non-programmers?
 Analyse what exists, show what could exist
 "Performative science fiction" demos

Thimbl: Performative science fiction
Federated social network (~2011)

Artwork, not to compete with Twitter
Built with a different social context
Can it work without investments?

How is it supposed to work?
Built with as little code as possible
Using SSH and Finger protocol (1970s)
Low-tech version of ActivityPub (Mastodon)

Programming system demos
Future programming

Imagining alternative ways
Often through (limited) demos
End-user, visual, domain-specific

Places to look at
Bret Victor:
LIVE workshop:
Ink & Switch:

worrydream.com
liveprog.org

inkandswitch.com

http://worrydream.com/
https://liveprog.org/
https://www.inkandswitch.com/

Demo
Crosscut: Drawing Dynamic Models

Complementary science
Learning from the past

Complementary
science
Contribute to scientific
knowledge through
historical and philosophical
investigations

Effectiveness of science
leads to dogmatism

Narrow focus can result in
loss of knowledges

Heat reflection (1791)
Heat produced by "caloric",
cold maybe by another
"positive" substance.

Heat is reflected by mirror!

Cold is absence of heat?
But also reflected!

Modern physicists never
talk about reflection of cold!

Complementary programming?

Dot-Com Design
(Ankerson, 2018)

Amateur can easily
cobble something
together

Hackability and
familiarity of

graphical editors

Gives designers

full control

Complementary science
Why use it for programming

 Feel all programming is the same?
 Programming has brief but rich history
 Not discarded for experimental failures
 Ideas are (relatively) easy to recreate!

Demo
Annoying pop-ups of the 1990s

Learning from

the 1990s web
View-source, copy
and edit culture

Hosting on Geocities &
creative community

Limited user protection
(hacks are for fun)

 2010s web

Compiled code

Minified with dependencies

Custom elements

Custom pop-ups using <div>

Opaque structure

WebAssembly & Canvas

Two eras of the web
 1990s web

View source

Readable source code

Copy & paste

Self-contained scripts

Pop-up windows

Unchecked window.open

Learning from the 90s web
WebStrates project

Shareable dynamic media
Document and code in DOM
Synchronized across clients
In-page editor & dev tools

Further ideas
How to support reuse by copying?
Openness and addressability of DOM

Boxer's naive realism

You see all there is

Good old programming systems

Smalltalk's self-sustainability

Built in itself

Pygmalion's programming

By demonstration

Good old programming systems

Hypercard's usability

From user to programmer

Conclusions
Close look at programs

Close look
As evaluation

Reveals more than one
may immediately see

As design tool

Think about programming
from new perspectives

Reading
Are spreadsheets programming?

Spreadsheets are Code: An Overview
of Software Engineering Approaches
Applied to Spreadsheets
tinyurl.com/nprg075-excel

Why should you read this?
Interesting case of end-user programming
How to use programming ideas in new domains

https://ieeexplore.ieee.org/abstract/document/7476773

Conclusions
Close reading and complementary science

Close look at fine coding details
Reveals broader cultural points
Close look at past programming systems
Reveals ideas we may have forgotten

Tomáš Petříček, 309 (3rd floor)



 |



petricek@d3s.mff.cuni.cz
https://tomasp.net @tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg075

mailto:petricek@d3s.mff.cuni.cz
https://tomasp.net/
http://twitter.com/tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg075

References (1/2)
Critical code studies

Marino, M. C. (2020). , MIT Press
Cox, G. (2012). , MIT Press
Lennon, B. (2021).

, Philosophy & Technology
Montfort, N. et al. (2013).

, MIT Press

Interesting past systems

diSessa, A. A., Abelson, H. (1986).
, CACM

Smith, D. C. (1975).
, MIT PhD

Critical Code Studies
Speaking Code

Foo, Bar, Baz…: The Metasyntactic Variable and
the Programming Language Hierarchy

10 PRINT

CHR$(205.5+RND(1)); : GOTO 10

Boxer: A Reconstructible
Computational Medium.

PYGMALION: A creative programming
environment

https://mitpress.mit.edu/9780262043656/critical-code-studies/
https://mitpress.mit.edu/9780262018364/speaking-code/
https://sci-hub.se/https://link.springer.com/article/10.1007/s13347-019-00387-2
https://10print.org/10_PRINT_121114.pdf
https://web.media.mit.edu/~mres/papers/boxer.pdf
http://worrydream.com/refs/Smith%20-%20Pygmalion.pdf

References (2/2)
Complementary science & programming

Chang, H. (2008). , Oxford
Ankerson, M. S. (2018).

, NYU
Petricek, T. (2021).

, Online

History of UNIX

Ritchie, D. (2002).
Bosch, T. ed. (2022).

, Princeton

Programming demos

Kaliski, S. et al. (2022).
, Ink & Switch

Inventing temperature
Dot-Com Design: The Rise of a Usable,

Social, Commercial Web
Pop-up from Hell On the growing opacity of web

programs

Odd Comments and Strange Doings in Unix
You Are Not Expected to Understand This: How

26 Lines of Code Changed the World

Crosscut: Drawing

Dynamic Models

https://global.oup.com/academic/product/inventing-temperature-9780195337389
https://nyupress.org/9781479892907/dot-com-design/
http://tomasp.net/blog/2021/popup-from-hell/
http://web.archive.org/web/20071011071722/http://cm.bell-labs.com/cm/cs/who/dmr/odd.html
https://nyupress.org/9781479892907/dot-com-design/
https://www.inkandswitch.com/crosscut/

