
NPRG075
Making programming
easier and learnable

Tomáš Petříček, 309 (3rd floor)

 |

Lectures: Monday 12:20, S7


petricek@d3s.mff.cuni.cz
https://tomasp.net @tomaspetricek

https://d3s.mff.cuni.cz/teaching/nprg075

mailto:petricek@d3s.mff.cuni.cz
https://tomasp.net/
http://twitter.com/tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg075

Introduction
Programming for non-programmers

What & why
Programming for non-programmers

 Augmenting human intellect research theme
 Reducing costs of programming for businesses
 Computer science & general education
 Thinking about how to think when programming!

Computational
thinking
Is that teaching
everyone to code?

What to teach and
how to best do it?

Designing languages
for education?

LOGO (1967)
Characteristics of the era

Not just a programming
language for kids

Computer environment:
people, things, ideas

Computer culture: a way of
thinking about thinking

No-code and
low-code
Platforms for creating
applications with
minimal code

A new take on end-
user programming

FLOW-MATIC
High-level business
oriented predecessor
of COBOL (1957)

Makes coding so easy
your company will not
need programmers!

Methodology
Programming for non-programmers

 Metaphors for explaining programming
 Cognitive models to understand human thinking
 Finding more manageable kinds of interactions
 Understanding & assisting with common errors

End-user programming
Making programming super easy

A small matter of programming
End-user programming (1993)

Spreadsheets, CAD systems,
statistical packages
Task specific systems

An elusive dream?
Can anyone become a programmer?
Beyond task-specific?
Programmable end-user systems?

End-user
programming
① Very high-level
Domain-specific languages

② Spreadsheets
CAD & statistical systems

③ User interaction
New kinds of specifying

High-level
languages
FLOW-MATIC (1960s)
English; easily taught to
clerical workers

DSLs (2000s)
Small languages for
specific problems

Low-code (2020s)
GUI-based entire
app development

Case study:
Darklang
Domain-specific
abstractions for
server-less backends

HTTP handler
Worker
Database
CRON job

Notations
Limits of high-level notations

 Requires a "tidy" problem domain
 There is no universal language
 Adaptable notations tend to be complex
 Cannot (should not?) accept human vagueness

What makes programming hard?
Cognitive obstacles

Loss of direct manipulation
(and the frame problem)
Use of (specialized) notation
Abstraction for complexity

Attention investment model
Cognitive obstacles have cost
Programming as an investment
When is the gain worth it?

Eliminating cognitive obstacles
 Spreadsheet-based interfaces

Avoid abstraction and give immediate feedback
 Programming by example

No need for notation and abstraction
 Direct manipulation

Manipulate concrete entities & post-hoc abstraction

Spreadsheets as programming
Are they really programming?

Domain-specific, but powerful
Turing-complete (in a way)
Lambdas, macros, extensions

Spreadsheets & programming
IDEs can learn about liveness
Spreadsheets can learn about software engineering
TechDims: Abstraction construction, feedback loops

General-purpose
spreadsheets?
(Marasoiu, 2019)

Spreadsheet-based
data visualization

Spreadsheet interface
for constructing
custom charts

What else could we
express this way?

Direct manipulation
Complete task manually,
have computer repeat it

Industrial robots, graphics
editing, task automation,
geometry, formatting

How to allow for small
variation in behaviour?

Wrangler
(Kandel et al, 2011)

Data wrangling by
direct manipulation

User cleans with data

System builds a script

Attempts to generalize
concrete interactions

Programming by example
FlashFill and FlashExtract

Write (or select) examples
System infers patterns
Refine examples to clarify

Implementation
Synthesize programs to match
Using carefully chosen small language
And a suitable search algorithm

Education
Teaching programming & thinking

MIT Artificial Intelligence Lab
Minsky & Papert
"Seymour Papert and Marvin
Minsky thought about thinking,
about children's thinking and
about machine's thinking."

LOGO project & language
Computers as "native speakers" of mathematics
Teach creative and logical thinking
Giving children tools to learn (Montessori)

LOGO as a language
Language features

Interactive and LISP-inspired
Lists, recursion, functional
More of an idea than a language

LOGO for education
Learning through microworlds
Give kids the most powerful language created
Powerful ideas: anthropomorphization, metalanguage

TO NOUN
 OUTPUT PICK [BIRDS DOGS ..]
END
TO VERB
 OUTPUT PICK [HATE BITE LOVE]
END
TO ADJECTIVE
 OUTPUT PICK [RED PECULIAR ..]
END

PRINT (SENTENCE ADJECTIVE
 NOUN VERB ADJECTIVE NOUN)

Microworlds
A small domain-
specific language for
exploring ideas

Turtle graphics is best
known example

First LOGO example
was for word plays

Turtle microworld
On-screen and floor robots

Great for teaching

Debug by pretending to be
the turtle & follow program

Does not blame students
("the turtle has a bug")

Computer science education
Teaching programming thinking today

 From 1960s idealism to 2020s pragmatism
 Focus on what we can convincingly study
 Improving teaching practices & methods
 Developing better conceptual frameworks

Notional machines
Models for thinking

Model of a computer operation
Helps understand computation
A "useful lie" for teaching

Example notional machines
Objects and message passing of Smalltalk
LOGO "little people" metaphor
Computation as railway track

Little people
metaphor
A powerful idea for
understanding how
programs work

Function instantiation
as a "little men" doing
(one step of) work

Linked lists (1/2)
Boxes with pointers as
connecting arrows

Let's insert 3 in the list
between 2 and 4...

Linked lists (2/2)
Boxes with pointers as
connecting arrows

Let's insert 3 in the list
between 2 and 4...

Useful but does not
explain everything that
pointers can do!

Computing education
Basic disagreements about the problem

 Computational thinking & algorithms for all?
 Creativity as with LOGO and Sonic Pi?
 History and philosophical problems?
 How to best teach present-day technology?

Metaphors
Thinking about programming

Metaphors for programming
Essence of human thought?

Time as resource, Up as positive, ...
Apparent through our language
Basic for constructing mathematics?
Each has fits and misfits

Metaphors for programming
Notional machines (LISP, Smalltalk)
Thinking about variables, monads

Two metaphors for variables
Variable as a box

You store value in a box
Variable "contains" a value
What is stored in a name?

Variable as a label
Label you place on a value
Variable "is" a value
What is a name?

Misconceptions
Does the metaphor for variables matter?

 What is the meaning of multiple assignment?
 Box can contain multiple values!
 Label will be for computation or addition
 Box metaphor wins, but beware of misfits

class Monad m where
 (>>=) ::
 m a -> (a -> m b) -> m b
 return ::
 a -> m a

Metaphors for
monads
Interface capturing a class
of computations

Used for effectful
computations in Haskell

How programmers
think about them?

Symbolic

Meaningless
symbolical entity
satisfying laws

Three metaphors for monads
Box

Container that can
be transformed
and un-nested

Track

Computation that
can proceed in
multiple ways

Misconceptions
Common errors in thinking

 Loops terminate when condition turns false
 Sequential statements do not wait
 Variable name has effect on its behaviour
 Missing else branch stops program

Conclusions
Easier and learnable

Thank you!
Please do keep in touch!

Do a final project (and get credit as a bonus)
Sign-up for a follow-up seminar
Get in touch about MSc or PhD projects

Tomáš Petříček, 309 (3rd floor)

 |


petricek@d3s.mff.cuni.cz
https://tomasp.net @tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg075

mailto:petricek@d3s.mff.cuni.cz
https://tomasp.net/
http://twitter.com/tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg075

References (1/3)
End-user programming

UNIVAC FLOW-MATIC (1957).
. Sperry Rand Corporation

Bonnie A. Nardi (1993). . MIT
Blackwell, A. F. (2002).

. VL/HCC
Blackwell, A.F., Burnett, M. (2002).

. VL/HCC

Spreadsheets

Marasoiu, M. et al. (2019).
. IS-EUD

Introducing a new language for
automatic programming

A Small Matter of Programming
First Steps in Programming: A Rationale for

Attention Investment Models
Applying Attention Investment to

End-User Programming

Cuscus: An End User Programming Tool
for Data Visualisation

http://s3data.computerhistory.org/brochures/univac.flowmatic.1957.102646140.pdf
https://mitpress.mit.edu/9780262140539/a-small-matter-of-programming/
https://www.cl.cam.ac.uk/~afb21/publications/HCC02a.pdf
https://ieeexplore.ieee.org/document/1046337
https://link.springer.com/chapter/10.1007/978-3-030-24781-2_8

References (2/3)
Programming by demonstration

Smith, D. C. (1977).
. ISR

Kandel, S., et al. (2011).
. CHI

Cypher A (ed.) (1993).
. MIT

Programming by example

Gulwani, S. et al. (2016). . DSSE
Vu Le, Gulwani S. (2014).

. PLDI

Pygmalion: A Computer program to Model and
Stimulate Creative Thought

Wrangler: Interactive Visual Specification of
Data Transformation Scripts

Watch What I Do: Programming by
Demonstration

Programming by Examples
FlashExtract: A Framework for Data

Extraction by Examples

https://link.springer.com/book/10.1007/978-3-0348-5744-4
http://vis.stanford.edu/files/2011-Wrangler-CHI.pdf
https://mitpress.mit.edu/9780262527965/watch-what-i-do/
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/12/pbe16.pdf
http://www-cs-students.stanford.edu/~adityagp/courses/cs598/papers/flash-extract.pdf

References (3/3)
Programming education

Solomon, C. et al. (2020). . HOPL
Papert S. (1980).

. Basic Books
Fincher, S. A. & Robins A. V. (eds.) (2019).

. Cambridge

Metaphors & misconceptions

Lakoff, G. & Nunez, R. (2001).
Petricek, T. (2018).
Hermans, F. et al. (2018).

. WiPSCE
Swidan, A. et al. (2018).

. ICER

History of LOGO
Mindstorms: Childern, Computers and Powerful

Ideas
The Cambridge Handbook

of Computing Education Research

Where Mathematics Come From
What we talk about when we talk about monads

Thinking out of the box: comparing
metaphors for variables in programming education

Programming Misconceptions for School
Students

https://ora.ox.ac.uk/objects/uuid:2f350f11-e986-4a08-a5dc-9cf6d5a9d1d4
http://worrydream.com/refs/Papert%20-%20Mindstorms%201st%20ed.pdf
https://www.cambridge.org/core/books/cambridge-handbook-of-computing-education-research/F8CFAF7B81A8F6BF5C663412BA0A943D
https://www.basicbooks.com/titles/george-lakoff/where-mathematics-come-from/9780465037711/
http://tomasp.net/academic/papers/monads/monads-programming.pdf
https://pure.tudelft.nl/ws/portalfiles/portal/47760609/box_label_vars.pdf
https://dl.acm.org/doi/10.1145/3230977.3230995

