Making programming
easier and learnable

Tomas Petricek, 309 (3rd floor)
= petricek@d3s.mff.cunicz
© nitps//tomasp.net | @tomaspetricek

Lectures: Monday 12:20, S/
© nttps//d3s.mff.cuni.cz/teaching/nprg0/5

mailto:petricek@d3s.mff.cuni.cz
https://tomasp.net/
http://twitter.com/tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg075

Programming for non-programmers

Programming for non-programmers

P8 Augmenting human intellect research theme

@ Recducing costs of programming for businesses
@B Computer science & general education

4 Thinking about how to think when programming!

Join the Movement to

Bring Computer Science
to ALL Students

fama

Computational
thinking

s that teaching
everyone to code”?

VWhat to teach and
now to best do it?

Designing languages
for education?

LOGO (1967)

Characteristics of the era

Not just a programming
language for kids

Computer environment:
neople, things, ideas

Computer culture: a way of
thinking about thinking

Voice

€ ApiTosot

Emails
& B

4 stripo

-ChatBots
@chatamo chatfuel

FLOWIXO

Mobile Apps
kinetise Biznessapps B makr [AppMachine BT
Appspotr’ L dropsource Foundry
AppOnboord buildfire [ZEEEE Mropinsiuie

oplaaj ® smooch —— 5|
BTARS appery. s BEE swiftic shoutem
Web
rFront End with eCommerce — | General Visual Site Builders — ~Wordpress Landing Pages - _pPortfolios -
wo s hegk || pivi Miayoureress [E]
upe Y sauareseace WX Layoutit! Id) @eavervuiaer Themify ™ © landen .1 dunked
readymac o | | Pagelines & mhriver EXPOSURE
I eey. ¥ volusion e Foling :
pixpa

webnode m Webﬂow

Prestashop

Supernova)

ooeucraft

- Front end from Cloud Spreadsheet — — Full Stack Web Builders - - Templates Forms
) Look mom no code MakerPad o . oo
sheet2site E glide. 5‘ bubble (‘xemqode { arengu >

launchaco

- Cloud Spreadsheet Business Apps

IR svee
3 Airtable]

- Applan DkissrLow Om..‘
i & podio
I [Py O pipefy

0 pronaHQ [FEVERN R [ERNEESEER PowerApps

&2 Q)24 Gskuid @inox AT

servicenow. Retool
Scrapers
T : 5
[l Octoparse (@ parsehub PAMSErS [Escrapestorm WebHarvy . testiri scriptworks
Connectors

) sctiondosk ST FLOWSO

IFTTT Sveoot Fow
APIANT

¥
DimPARABOL zapier

No-code and
low-code

Platforms for creating
applications with
minimal code

A new take on end-
user programming

UNIQUE SAVINGS
of the

FLOW-MATIC

FLOW-MATIC

High-level business
oriented predecessor
of COBOL (1957)

Makes coding so easy
your company will not
need programmers!

Programming for non-programmers

X Metaphors for explaining programming

40 Cognitive models to understand human thinking
2 Finding more manageable kinds of interactions

@ Understanding & assisting with common errors

End-user programming
Making programming super easy

A small matter of programming

End-user programming (1993)

e Spreadsheets, CAD systems,
statistical packages
e Task specific systems

An elusive dream?

e Can anyone become a programmer?
e Beyond task-specific?
e Programmable end-user systems?

A MBI MIATTER
OF PROGRAMMING

BONNIE A. NARDI

@ Very high-level
Domain-specific languages

@ Spreadsheets
CAD & statistical systems

Interactive
construction

@ User interaction

New kinds of specifying

High-level
languages

FLOW-MATIC (1960s)
English; easily taugnt to
clerical workers

DSLs (2000s)
Small languages for

puter flow charts requires a
long training period. Flow-Matic

e

= e el specific problems

knowledge of the application to
be programmed.

Low-code (2020s)
GUIl-based entire
app development

Domain-specific
abstractions for
server-less backends

e HT TP nandler
o \\NOrker

e Database
e CRON job

Limits of high-level notations

8¢ Requires a "tidy" problem domain

Thereis no universal language

& Adaptable notations tend to be complex

& Cannot (should not?) accept human vagueness

Cognitive obstacles

e Loss of direct manipulation
(and the frame problem)

e Use of (specialized) notation

e Abstraction for complexity

. . \J »
Attention investment model {I

e Cognitive obstacles have cost =

e Programming as an investment
e \When is the gain worth it?

BB Spreadsheet-based interfaces

Avoid abstraction and give immediate feedback
£ Programming by example
O need for notation and abstraction

I Direct manipulation
\Vianipulate concrete entities & post-hoc abstraction

Are they really programming?

e Domain-specific, but powerful
e Turing-complete (in a way)
e [ambdas, macros, extensions

Spreadsheets & programming
e |[DES can learn about liveness

Clipboard Font Alignment Number Styles cells

A s G D e F 3 A I 3 K L [N o B ok

1 -

e Spreadsheets can learn about software engineering
e TechDims: Abstraction construction, feedback loops

General-purpose

spreadsheets?
(Marasoiu, 2019)

Spreadsheet-based

- — data visualization

: — Spreadsheet interface
= s E.k!wao ,

1 —— for constructing

° custom charts

VWhat else could we
express this way?

Direct manipulation

Complete task manually,
have computer repeat it

Industrial robots, graphics
editing, task automation,
geometry, formatting

How to allow for small
variation in benhaviour?

Transform Script Import Export

» Split data repeatedly on newline into
rows

» Split split repeatedly on ',

» Promote row O to header

" Delete empty rows

» Extract from Year after 'in '
P Set extract's name to State

> Fill State by copying values from above

I Text Columns Rows Table

Delete rows where Year starts with
'Reported’

Delete rows where Year contains
'Reported’

Extract from Year between positions 0, 8

Clear

0 Reported
1 2004
2 2005
3 2006
4 2007
5 2008
6 Reported
7 2004
8 2005
9 2006
10 2007
11 2008
12 Reported
13 2004
14 2005
15 2006
16 2007
17 2008

Reported
Arkansas

19 2004

18

Year

crime

crime

crime

crime

in

in

in

in

Alabama Alabama
Alabama
Alabama
Alabama
Alabama
Alabama

Alaska Alaska
Alaska
Alaska
Alaska
Alaska
Alaska

Arizona|Arizona
Arizona
Arizona
Arizona
Arizona

Arizona
Arkansas

Arkansas

State

4029.
3900
3937
3974.
4081.

3370.
3615
3582
3373.
2928.

5073.
4827

4741.
4502.
4087.

4033.

Property]

©

Kandel et al, 2071

Data wrangling by
direct manipulation

Jser cleans with data
System builds a script

Attempts to generalize
concrete interactions

Programming by example

FlashFill and FlashExtract
o Write (or select) examples

e System infers patterns

e Refine examples to clarify

,""ug/L"™,0.350,0.489,2428667.736"

""ug/L"",0.004,3.315,3606.816"

,""ug/L"™",3.088,2.387,4648771.382"

Implementation

T
,""ug/L"™,0.026,0.702,228830.402"

e Synthesize programs to match
e Using carefully chosen small language
e And a suitable search algorithm

Teaching programming & thinking

Minsky & Papert

‘Seymour Papert and Marvin
Minsky thought about thinking,
about children's thinking anc
about machine's thinking.

LOGO project & language

e Computers as 'native speakers’ of mathematics

e Teach creative and logical thinking
e Giving children tools to learn (Montessori)

Language features

e [nteractive and LISP-inspirec
e Lists, recursion, functional
e More of an idea than a language

TO NEWFLOWER
REPEAT 16

L OGO for education

e | earning through microworlds
e Give kids the most powerful language created
e Powerful ideas: anthropomorphization, metalanguage

TO NOUN
OUTPUT PICK [BIRDS DOGS ..]
END
TO VERB
OUTPUT PICK [HATE BITE LOVE]
END
TO ADJECTIVE

OUTPUT PICK [RED PECULIAR .

END

PRINT (SENTENCE ADJECTIVE
NOUN VERB ADJECTIVE NOUN)

.]

A small domain-
specific language for
exploring ideas

Turtle graphics is best
Known example

First LOGO example
was for word plays

Turtle microworld

On-screen and floor robots
Great for teaching

Debug by pretending to be
the turtle & follow program

Does not blame students
("the turtle has a bug’)

Teaching programming thinking today

A& From 1960s idealism to 2020s pragmatism
& Focus on what we can convincingly study
W Improving teaching practices & methods

& Decveloping better conceptual frameworks

Notional machines

Models for thinking

e Model of a computer operation
e Helps understand computation
e A'usefullie” for teaching

Example notional machines

e Objects and message passing of Smalltalk
e OGO 'little people” metaphor
e Computation as railway track

PRINT man

ITEM 2 [ABC]

—
—
B
The PRINT man sees
that his input is
_—

ITEM 2 [AB C]

So he calls up a friend
and gives him the
procedure ITEM and
the appropriate inputs.
He says: Get the job
done; don’t bother me
until you are through.

[Later]
The reply to my request ¢——
is B. Now I can PRINT it.

ITEM man
ITEM 1 [B C]
—
—
B
The ITEM man says:
:NUM is 2. If it were 1,
_

I'd reply FIRST of

[AB C], or A. Butitis
not 1, so I see I have to
call up another guy to get

ITEM 1 [B C]

[Later]

The reply to my request

is B. My instructions say

I must OUTPUT the
answer. That means I must
pass it back.

another
ITEM man

This guy has it
casy. He replies
B, since the
program says

OUTPUT FIRST

[BC]

A powerful idea for
understanding how
programs work

~unction instantiation
as a little men’ doing
(one step of) work

Boxes with pointers as
connecting arrows

Let's insert 3 in the list
petween 2 and 4.

Boxes with pointers as
connecting arrows

Let's insert 3 in the list
petween 2 and 4.

Useful but does not
explain everything that
pointers can do!

Basic disagreements about the problem

5> Computational thinking & algorithms for all?
a3 Creativity as with LOGO and Sonic Pi?

@ History and philosophical problems?

les How to best teach present-day technology?

Metaphors
Thinking about programming

Essence of human thought?

e [IMe asresource, Up as positive, ...
e Apparent through our language WHrERE
e Basic for constructing mathematics? (AT
e Fach has fits and misfits

Metaphors for programming

HOW THE EMBODIED MIND BRINGS MATHEMATICS INTO BEING

o Notional machines (LISE Smalltalk) [
e Thinking about variables, monads

Two metaphors for variables

Variable as a box 4
e You store value in a box |

e \/ariable 'contains’ a value
e \What is stored in a name” M | M

Variable as a label

e | gbel you place on a value
e \ariable 'Is" a value
e \Whatis a name”

Does the metaphor for variables matter?

« Whatis the meaning of multiple assignment?
® DBox can contain multiple values!

© Label will be for computation or addition

W Box metaphor wins, but beware of misfits

class Monad m where
(>>=)
ma —-> (a -> m b)
return ::
a —-> m a

-> m b

Interface capturing a class
of computations

Jsed for effectful
computations in Haskell

How programmers
think about them?

Symbolic Box Track

Meaningless Container that can Computation that
symbolical entity be transformed can proceed in
satistying laws and un-nested multiple ways
T fra——=»b g:b——=c
T3 — 5 T2
uTl lﬂ: a%@ \. \\.
p— [a][a]|—[ad] fiﬂg‘:b<”

Common errors in thinking

O Loops terminate when condition turns false
= Sequential statements do not wait
Variable name has effect on its behaviour

€ Missing else branch stops program

Conclusions
Fasier and learnable

Please do keep in touch!

e DO a final project (and get credit as a bonus)
e Sign-up for a follow-up seminar
e (et intouch about MSc or PhD projects

Tomas Petricek, 309 (3rd floor)

™ petricek@d3s.mff.cuni.cz

© Nnttps//tomasp.net | @tomaspetricek

© nitps/d3s.mff.cuni.cz/teaching/nprg0/5

mailto:petricek@d3s.mff.cuni.cz
https://tomasp.net/
http://twitter.com/tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg075

References (1/3)

End-user programming

o UNIVAC FLOW-MATIC (1957). Introducing a new language for
automatic prograrmming. Sperry Rand Corporation

e Bonnie A Nardi (1993). A Small Matter of Programming. MIT

e Blackwell, A. F. (2002). First Steps in Programming: A Rationale for
Attention Investment Models. VL/HCC

o Blackwell, A.F, Burnett, M. (2002). Applying Attention Investment to
End-User Programming. VL/HCC

Spreadsheets

e Marasoiu, M. et al. (20179). Cuscus: An End User Programming Tool
for Data Visualisation. IS-EUD

http://s3data.computerhistory.org/brochures/univac.flowmatic.1957.102646140.pdf
https://mitpress.mit.edu/9780262140539/a-small-matter-of-programming/
https://www.cl.cam.ac.uk/~afb21/publications/HCC02a.pdf
https://ieeexplore.ieee.org/document/1046337
https://link.springer.com/chapter/10.1007/978-3-030-24781-2_8

References (2/3)

Programming by demonstration

e Smith, D. C. (1977). Pygmalion: A Computer program to Model and
Stimulate Creative Thought. ISR

e Kandel, S, et al. (2011). Wrangler: Interactive Visual Specification of
Data Transformation Scripts. CHI

e Cypher A (ed.) (1993). Watch What | Do: Programming by
Demonstration. MIT

Programming by example

o Gulwani, S.etal (2016). Programming by Examples. DSSE
e VU Le, Gulwani S. (2014). FlashExtract: A Framework for Data
Extraction by Examples. PLDI

https://link.springer.com/book/10.1007/978-3-0348-5744-4
http://vis.stanford.edu/files/2011-Wrangler-CHI.pdf
https://mitpress.mit.edu/9780262527965/watch-what-i-do/
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/12/pbe16.pdf
http://www-cs-students.stanford.edu/~adityagp/courses/cs598/papers/flash-extract.pdf

References (3/3)

Programming education

e Solomon, C. et al. (2020). History of LOGO. HOPL

e PapertS. (1980). Mindstormes: Childern, Computers and Powerful
|deas. Basic Books

e Fincher, S. A & Robins A V. (eds.) (2019). The Cambridge Handbook
of Computing Education Research. Cambridge

Metaphors & misconceptions

o Lakoff, G. & Nunez, R. (2007). Where Mathematics Come From

e Petricek, T. (2018). What we talk about when we talk about monads

e Hermans, F et al. (2018). Thinking out of the box: comparing
metaphors for variables in programming education. WiPSCE

e Swidan, A. et al. (2018). Programming Misconceptions for School
Students. ICER

https://ora.ox.ac.uk/objects/uuid:2f350f11-e986-4a08-a5dc-9cf6d5a9d1d4
http://worrydream.com/refs/Papert%20-%20Mindstorms%201st%20ed.pdf
https://www.cambridge.org/core/books/cambridge-handbook-of-computing-education-research/F8CFAF7B81A8F6BF5C663412BA0A943D
https://www.basicbooks.com/titles/george-lakoff/where-mathematics-come-from/9780465037711/
http://tomasp.net/academic/papers/monads/monads-programming.pdf
https://pure.tudelft.nl/ws/portalfiles/portal/47760609/box_label_vars.pdf
https://dl.acm.org/doi/10.1145/3230977.3230995

