Heuristic evaluation of
Drogramming systems

Tomas Petricek, 309 (3rd floor)
= petricek@d3s.mff.cunicz
© nitps//tomasp.net | @tomaspetricek

Lectures: Monday 12:20, S/
© nttps//d3s.mff.cuni.cz/teaching/nprg0/5

mailto:petricek@d3s.mff.cuni.cz
https://tomasp.net/
http://twitter.com/tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg075

Programming systems
What really matters?

What can we study?

#Z Formal semantics and type safety

B8 [earmnabllity for novice programmers
A& Socio-technical context of the system
/Il Principles behind the system design

What makes a
language popular

None of the things

'\"\'ww*/\’ AN
Ww V\\/"’N\\N we talked about?

Ly W.MM MMM

Popular # Good

Python == (C Java C++ == CF == Visual Basic JavaScript == Assembly language = SQL PHP

The index has its flaws

Still a reason to think!

P
A

3 m
] = =
X

= =
o @

o
]

Enthusiastic
community”
Good tooling?
Clean idea?
Practicality?

Need to talk about
ess exact things!

o
=

<
=
=
=}
=

& S

elphi

Survey analysis

e Survey of language characteristics
e Feature and language correlations
e tinyurl.com/nprg0/5-socio

Adoption of languages

e Libraries matter
e | egacy and history matter
e Flexibility more iImportant than correctness

https://lmeyerov.github.io/projects/socioplt/viz/index.html

'mportant but hard to study

d= Expressivity of the programming notation
Bl Unifying conceptual model ("everything is ...")
& Style of interaction with the system

R Cxtensibility and flexibility of the language

Vis y of
System Status

Designs should keep users informed
about what is going on, through
appropriate, timely feedback.
Interactive mall maps have
to show people where they
E{ currently are, to help them

understand where to go next.

Match between
System and
the Real World

The design should speak the users'
language. Use words, phrases, and
concepts familiar to the user, rather
than internal jargon.

Users can quickly understand

] Wwhich stovetop control maps
B each heating element

Error
Prevention

Good error messages are
important, but the best designs
carefully prevent problems from
occurring in the first place.

Guard rails on curvy mountain

@¥ roads prevent drivers from

falling off cliffs.

Aesthetic and
Minimalist
Design

Interfaces should not contain
information which is irrelevant. Every
extra unit of information in an
interface competes with the relevant
units of information.

A minimalist three-legged
TN stool is still a place to sit.

NN/g

Nielsen Norman Group

Jakob’s Ten

Usability Heuristics

User Control
and Freedom

Users often perform actions by
mistake. They need a clearly marked
“emergency exit" to leave the
unwanted action.
- Just like physical spaces,
digital spaces need quick
“emergency” exits too.

Recognition
Rather Than Recall

Minimize the user's memory load
by making elements, actions, and
options visible. Avoid making users
remember information.

People are likely to correctly

answer “Is Lisbon the capital
of Portugal?”.

Recognize,
Diagnose, and
Recover from Errors

Error messages should be expressed

in plain language (no error codes),

precisely indicate the problem, and

constructively suggest a solution.
Wrong-way signs on the
road remind drivers that

A M they are heading in the
wrong direction.

Consistency
and Standards

Users should not have to wonder
whether different words, situations,
or actions mean the same thing.
Follow platform conventions.

Check-in counters are usually
located at the front of hotels,
which meets expectations.

=

Flexibility and
Efficiency of Use

Shortcuts — hidden from novice users
— may speed up the interaction for
the expert user.

Regular routes are listed on
maps, but locals with more
knowledge of the area can

take shortcuts.

1 Help and
Documentation

It’s best if the design doesn’t need any
additional explanation. However, it
may be necessary to provide
documentation to help users complete
their tasks.
ﬁ Information kiosks at airports
are easily recognizable and

g solve customers' problems in
context and immediately.

High-level rules,
characteristics or
principles

Developed by experts,
nased on reviews and
experience

Useful for evaluation,
classifying, analysis,
new design

Heuristic frameworks

~ Levels of liveness of programming systems

@ Memory models of programming languages

40 Cognitive dimensions of notation

@ Technical dimensions of programming systems

Programming systems
Liveness and memory models

From batch
processing ...

Coding at the computer
prohibitively expensive

Write program, punch on
cards, submit & wait

A few day feedback cycle!

... to live coded music performance

Break - DJ_Dave (Live Coded Performance)

https://www.youtube.com/watch?v=KGzqyGaYyqs

Planning and coding of
problems for an electronic
computing Instrument
(Goldstine, von

Neumann, 1948)

r

.

4 .)

Stream-driven updates
Informative, significant, responsive and live

(3.)
Edit-triggered updates
Informative, significant and responsive
4 2. ™)
Executable flowchart

Informative and significant

1. !
Flowchart as ancillary description
Informative

_ J
-)

Figure 2. Levels of ‘liveness’ in visual programming systems
£ P g Sy

(Tanimoto, 1990)

Level 1
Flowchart that exists
independently of a program

Level 4

Continuous processing
with immediate dynamic
change of behaviour

Programming system heuristic

¥ Single property of specific systems

8 Can be used for comparing systems

4 magines step beyond the state-of-the-art
R Can be used for designing new systems

Primary representation

e How things are represented
e Defines what can be done
e Defines how to think!

oo
5|5 |8
S| ®|S
wlm|w
pa| e |
S| &

Six major conceptualizations

e COBOL, LISP and FORTRAN
e SQL, UNIX and tape storage
e Inreality it's always a mix

COBOL - Memory is a nested record (tax form)
O need for pointers, but no sharing allowea

SP - Memory is an object graph (symbol list)
exible, but serialization & efficiency tricky

FORTRAN - Memory is a bunch of arrays (vector)
Close to the metal, but no semantic checking

P
S

PES - Magnetic tape model (I/0 streams)
pDecific, but great for some problems (MapReduce)

MULTICS - Tree with blob leaves (file system)

Legible, allows separation; rarely used in full

SQL - Memory is a set of relations (tables)
Expressive guery language, c.f. Prolog and similar

Programming system heuristic

BB Single property of any programming system
£ Categorical rather than ordinal

B Sheds light on what exists

B Opentoquestioning, e.qg., is that all there is?

Notations
Cognitive dimensions

Notations and humans

Notations in computing

e Programming languages
e Markup and config files
e Rule and macro editors

User experience questions

e Does the notation structure
support activities of the user?
'S one notation the best?

S
i e v

.Yr'ﬂuur\-rl/w»ﬂ»ﬁwﬂd “’m‘i',.‘. «‘,m%

gt e sty

o) ety
i o A Lt
LAt ek

M,,_:u
M

e .
AR e
Sl m-.‘..«

Programming system heuristic

&f Comprehensible broad-brush evaluation

O

Understandable for non-specialists
Distinguish different user needs

Prompt designers to see more choices

ACTIVITIES

COGNITIVE DIMENSIONS

Dimensions x
Activities

Variety of dimensions
-Oor a given activity
Activities

Generic activities
involving notations

Fach has different
notational needs

4dO%N a0

Incrementation - adding formulas to spreadsheet
Transcription - copying data from paper
Modification - changing formula in a spreadsheet
Exploratory design - designing software structure
Searching - finding uses of a function

Exploratory understanding - understanding code

ACTIVITIES

COGNITIVE DIMENSIONS

Dimensions x
Activities

Variety of dimensions
-Oor a given activity

Dimensions

Characteristic
of the notation

Human-computer
interaction analysis
perspective

Q Viscosity - Resistance to change

@ Visibility - Ability to view components easily

94 Premature commitment - Need to decide too early
Hidden dependencies - Important links not visible

=]
AP Role-expressiveness - Purpose of an entity is clear

® > | B &

Error-proneness - Notation invites mistakes
Abstraction - Types and availability of mechanisms
Consistency - Similar syntax has similar semantics
Diffuseness - Verbosity of language

Hard mental operations - High cognitive demand

B Filters | tomas@tomasp.net | Pro. X

‘ < C' @& Proton Technologies AG [CH] | https://mail protonmail.com/filters

e PrOtonMEu Q Search messages v =% @ o~ &

SETTINGS CONTACTS REPORTBUG TOMAS PETRICEK
€ BACK TO MAIL

® Dashboard

Custom Filters

Account Add a custom filter to perform actions such as automatically labeling or archiving messages.

Folders / Labels

Filters ADD SIEVE FILTER % You can drag and drop custom filter to order them
Auto-Reply

Security
Info (Other)

Appearance

§ Addresses / Users Info (GitHub) EDIT EDIT SIEVE

@ Domains

Info (Academic) EDIT EDIT SIEVE

2 IMAP/SMTP

pm.me Info (Microsoft)

Payments

Keys

</ ProtonVPN

Spam Filters

Donate

Sender specific spam rules can be applied here. Whitelist addresses always go to Inbox while Blacklist addresses always go to Spam. Marking a
message as spam adds the address to the Blacklist. Marking a message as not spam adds the address to the Whitelist. Learn More

Whitelist m Blacklist m

No emails in the Whitelist, click Add to add addresses to the Whitelist No emails in the Blacklist, click Add to add addresses to the Blacklist

https://mail protonmail.com/contacts -

Case study

Two ways of specitying
email filters

Visual rule editor vs.
scripting language

isual editor

Custom Filter

Custom filters work on all new emails, including incoming emails as well as sent emails

Name Info (GitHub)|

If | the sender v contains v

com X or jtter.im X 0 v

ADD CONDITION

Apply labels

Move to
Inbox Archive Spam Trash
Info (Academic) Info (GitHub! Info (Microsoft) Info (Other)
Work ADD FOLDER

Mark as

Send auto reply

CANCEL

Scripting language

Custom Filter

Custom filters work on all new emails, including incoming emails as well as sent emails

Name Info (Other)

To find out how to write Sieve filters, click here.

Sieve require ["fileinto", "imap4flags"];
Script
if anyof
(address :all :comparator "ijunicode-casemap" :contains
["Delivered-To", "To", "Cc", "Bcc"]
["info@tomasp.net", "students@clarehall.cam.ac.uk",
"Clarehall-students-official@lists.cam.ac.uk",
"clarehall-info@lists.cam.ac.uk",
"clarehall-events@lists.cam.ac.uk"],
address :all :comparator "ijunicode-casemap” :contains
"From" "no-reply@slack.com")

fileinto "Info (Other)";

Custom Filter

Custom filters work on all new emails, including incoming emails as well as sent emails

Name Info (GitHub)

@ ort@gitte
DDDDDDDDDDDD
Apply labels
Move to
Inbo Archive Sp:
Info (Acad) Info (GitHub) Info (M ft)
Work | ADDFOLDER

CCCCCC

Trash

Info (Other)

Adding new condition

Viscosity
Not all additions possible

Abstraction
Condition format is fixed

Hard mental operations
Cverything is simple & clear

Custom Filter

Adding new condition

Custom filters work on all new emails, including incoming emails as well as sent emails

Name Info (Other)

. .
To find out how to write Sieve filters, click here. \/ | S C O S | ty

Sieve

require ["fileinto", "imap4flags"];
Script

T 0 p e Sl e (e Ed |J[J[GXJ[for a ny C h all g c

["Delivered-To", "To", "Cc", "Bcc"]
["info@tomasp.net", "students@clarehall.cam.ac.uk",
"Clarehall-students-official@lists.cam.ac.uk",
"clarehall-info@lists.cam.ac.uk",

.
"clarehall-events@lists.cam.ac.uk"], A b St ra(:t I O n
address :all :comparator "i;unicode-casemap" :contains

"From" "no-reply@slack.com")

fileinto "Info (Other)";

5 Possible via a script

Hard mental operations
Understanding code is hard

CANCEL

Two ways of specifying filters

Cognitive dimensions

e |Jsed for evaluation
e Consider activities & dimensions
e Clearlists to use

What is a better notation?

e \Wrong guestion: different trade-offs!
e UlIsviscose, less gbstract, but simpler
e ScCript has abstractions, less viscose, but harder

Contrast with text for
addition (writing code)

Premature commit
Diffuseness / verbosity
Abstraction

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ Crror-proneness

CDs in the real-world!

o A Usability Analysis of Blocks-based
Programming Editors using
Cognitive Dimensions

e tinyurl.com/nprg07/5-blocks (SciHUD)

Opo-40

[=]

$

Why read this paper

e Example of rigorous analysis
e Based on a user study
e Equally possible with expert assessment

https://ieeexplore.ieee.org/abstract/document/8506483
https://sci-hub.se/https://ieeexplore.ieee.org/abstract/document/8506483

Programming systems
Technical dimensions

Programming system is

Integrated and complete set of
tools sufficient for creating,
modifying, and executing programs

These will include

Notations for structuring programs
and data, facilities for running ana
debugging programs, and interfaces
for performing all of these tasks.

e arcs with the procedures ARCRIGHT and ARCLEFT.

Try running some. of tha“ followinhg commands ‘to draw pictures
in the graphics box above.

Isun R: 0.?;" ‘»{ﬂower S: l.‘rJ lsh'nky R: 2.6]

.

Research and industry

e Low-CcOde and no-code startups
e [ve & Interactive systems
e [Nnteresting code editors

How do we talk about these?

e Difficult to say what is new
e Hard to look beyond the interface
e Programming systems deserve a theory too!

Dim #1

777

?7?

° PERIDOT

.Pygmallon

.Spreadsheets

Smalltalk
®

.HyperCard

777

Dim #2

Boxer
o

UNIX
[

®_Java
:.3.C++
SQL. ‘."Rust

Haskell \

Programming Languages
“Hornets’ Nest”

Based on analysis of past
and modern systems

Capture their key
characteristics

Describe a range of
Dossible values

Descriptive, not prescriptive

Interaction

Feedback Loops

NModes of interaction
Abstraction Construction

Notation

Notational Structure
Surface/Internal
Primary/Secondary
Expression Geography
Uniformity

Error Handling
Error Detection
crror Response

Conceptual Structure
Integrity/Openness
Composability
Convenience
Commonality

Customizability
Staging
Externalizability
Additive Authoring
Self-Sustainability

(Others)
Degrees of Automation
Learnability & Sociability

¥

Post-modernist @
: : : FATHER'S PARENTHESES
e \ariety of different notations 2 22 &

IS
MDD

Jne
i

e More to learn, but better problem fit
e Perllanguage, Web platform

FOR A MORE... CIVIUZED AGE.

Modernist

e Small set of uniform primitives
e Not everything fits the notation
e Lisp and (partly) Smalltalk

Self-sustainability

Separate language level

e |mplementation vs. user level
e Limited changeability from within
e Java and other languages

Integrated systems design

e Implemented & modifiable in itself
e Often changeable at runtime
e Smalltalk, Lisp Machines

From Concrete f
e Generalize from examples I — i

3 | Macey Conrad =RIGHT([@FN],LEN([@FN])-FIND(" ",[@FN],1))

e Expanding range in Excel e
e Pygmalion system

From Abstract Fos
e Define function first

e Most programming languages

e Coding done without values

Programming system heuristic

)

Ml
T

P

M

\Viaking sense of different systems
Broad strokes and high-level
Useful for making comparisons

Useful for finding gaps in design space

Conclusions
Heuristic analysis

Evaluation Requirements

Performance evaluation .

User experiments and Cr € atlon

Case studies Interviews . .

Expert evaluation Corpus studies B t h d g t
Formalism and proof Natural Programming O | e a e ﬂ e ra | O ﬂ
Qualitative user studies Rapid Prototyping

and evaluation

Figure 1. A typical design process

Depends on the
kind of heuristic

Categorical allows
questioning

Ordinal allows for
degree comparison

Announcement

Next lecture will be onlinel!

e 1220, January 2, 2023
e Matfyz.zoom.us/j/919456259/4
e Meeting ID: 919 4062 59/4

Z00Mm

https://matfyz.zoom.us/j/91945625974

Heuristic evaluation of programming systems

e Memory (categorical) and liveness (ordinal)

e Cognitive and technical dimension frameworks
e Broad-brush map of the design space

e Useful for evaluation and novel design ideas

Tomas Petricek, 309 (3rd floor)

™ petricek@d3s.mff.cuni.cz

© Nnttps//tomasp.net | @tomaspetricek

© nttps//d3s.mff.cuni.cz/teaching/nprg0/5

mailto:petricek@d3s.mff.cuni.cz
https://tomasp.net/
http://twitter.com/tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg075

References (1/2)

Live visual programming

e Tanimoto, S. L. (1990). VIVA: A visual language for image processing,
Journal on Visual Languages

e Tanimoto, S. L. (2013). A Perspective on the Evolution of Live
Programming, LIVE

Language adoption & Heuristics

o Meyerovich, L. A, Rabkin, A. S. (2013). Empirical Analysis of
Programming Language Adoption, OOPSLA

o Meyerovich, L. A, Rabkin, A. S. (2012). Socio-PLT: Sociological
Principles for Programming Language Adoption, Onward!

e Nielsen, J. (1994). 10 Usability Heuristics for User Interface Design.
Norman-Nielsen Group

https://sci-hub.se/https://www.sciencedirect.com/science/article/abs/pii/S1045926X05800126
http://projectsweb.cs.washington.edu/ole/Liveness2013.pdf
https://raw.githubusercontent.com/lmeyerov/lmeyerov.github.io/master/projects/socioplt/papers/oopsla2013.pdf
https://raw.githubusercontent.com/lmeyerov/lmeyerov.github.io/master/projects/socioplt/papers/onward2012.pdf
https://www.nngroup.com/articles/ten-usability-heuristics/

References (2/2)

Cognitive, technical & memory models

o Sitaker, K. J. (2016). The memory models that underlie
orogramming languages, Online

e Jakubovic, J. et al. (2023). Technical Dimensions of Prograrmming
Systems, Programming

e Holwerda, R, Hermans, F. (2018). A usablility analysis of blocks-
based programming editors using cognitive dimensions, VL/HCC

o Blackwell, A, Green, T. (2002). Notational Systems — the Cognitive
Dimensions of Notations framework. (Chapter)

A bit of history

o Goldstine, H., von Neumann, J. (1947). Planning and coding of
oroblems for an electronic computing, Princeton

http://canonical.org/~kragen/memory-models/
https://raw.githubusercontent.com/jdjakub/papers/master/prog-2022/prog22-master.pdf
https://ieeexplore.ieee.org/document/8506483
https://www.cl.cam.ac.uk/~afb21/publications/CarrollChapter.pdf
https://www.ias.edu/sites/default/files/library/pdfs/ecp/planningcodingof0103inst.pdf

