Programming language design

Tomas Petricek, 309 (3rd floor)
= petricek@d3s.mff.cunicz
© nitps//tomasp.net | @tomaspetricek

Lectures: Monday 12:20, S/
© nttps//d3s.mff.cuni.cz/teaching/nprg0/5

mailto:petricek@d3s.mff.cuni.cz
https://tomasp.net/
http://twitter.com/tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg075

Introduction
What? Wny? How?

Making programming
languages | experience | systems)
better!

E)

Iﬁl

PhD, University of Cambridge
Context-aware programming languages

Microsoft Research Cambridge
=4 and applied functional programming

The Alan Turing Institute, London
Expert and non-expert tools for data science

University of Kent, Canterbury
History and programming systems

: I

(var) l@useFx:T (x:Tel)

(const) laign -1 : num

) F@rl—e]:ﬁl)'rz leskey:Ty

a

w Fer® (s®t)-eqex:12
Nxtier Aske:1;

(abs)

Nerk Ax:Ty.e: 1 N T

Nerkey:m MNx:ti@skez: T2
les® (s@r)Fletx=ej iney: 1y

(let)

Frer’Fe:t

1
<
FrerkFe:t (r'<r)

(sub)

Figure 22: Type system for the flat coeffect calculus

Program as expression in
small formal language

Type system determines
what programs are valid

Safety proof shows no
Jnauthorized accesses

Data science tools
e and I angu ages

An example: visualizing data in the notebook

Below is an example of a code cell. We'll visualize some simple data using two popular packages in
Python. We'll use NumPy to create some random data, and Matplotlib to visualize it.

Note how the code and the results of running the code are bundled together. R e S U | t | S a d O C U I | I e n t
from matplotlib import pyplot as plt
S not a program

Generate 100 random data points along 3 dimensions
X, Yy, scale = np.random.randn(3, 100)
fig, ax = plt.subplots()

. .
Map each onto a scatterplot we'll create with Matplotlib
ax.scatter(x=x, y=y, c=scale, s=np.abs(scale)*500) O r I I l g W I O n ‘

ax.set(title="Some random data, created with JupyterLab!")

o Some random data, created with JupyterLab! C O n C rete d ata S et
! Different language anc

system requirements!

-14

-2 4

-3 4

OG:"D’D@T’ 12, 1977 XERDX — Learning Research Group

1049 am
SCPeen restore

1314 disk pages Smalitalk quit
Changes
Files

i Interacting with a
stateful environment

Messnges
Hatdeopy

fields
p| Flits 46 1@ Stprthass for proseniing windmws o dis fr%'lr rj§ Let p ’/_O g ra m m e rS d O

hahds conornl. wnri ohe srus s depressed. orrshie,
fiolhds coner, o dismribunes muesaages 1o el masad on wser
LI,

more In New ways...

STATTUp)
sorollBar [frarre contains: styus locs
[self enter.
[l FEPEALE
[frr[;tgn,@hwn&ams_: sthu,slfm'f;b " | . I
eyboard active=[self keyboan |.t .t .t |
STYUS doumic [Self pendodm,
S , s not just a language!
Stylus doums[self leare]]]
Tifalse]

Deafault Event Responzes
enter [zelf show]
leave

Form. Editor ourside [1ifalse]
[keyboard next. user flash]

mage
show?

[frame outling,
leframe put: self title at: frame origin + titkeloc,

Bringing everything together

Systems D languages

G H J K
e Programming Process matters |5 s v T e s
5 2000 3 148148148 run time for n"2
e [o0ls shape languages =
8 5000 9 9.25925926 120

. 9 6000 13 133333333,

e Harder to formalize & study! ek
. 11 8000 22 23.7037037

12 9000 28 30 &0

13 10000 34 37.037037 40

14 11000 41 448148148 20

15 12000 49 53.3333333 0
16 13000 58 62.5925926 ° c"@@ &

[. [Y W $ &
17 14000 68 72.5925926 R A
nleraisciplinary researc B o 7 s s e

19 16000 87 94.8148148

20 17000 118 107.037037
21 18000 114|=D21*D21/2700000

e Formal language models
e Systematic design
e Qualitative and quantitative studies

LINQ queries in Visual Basic NET and C#

Dim db As New northwindDataContext
Dim ukCompanies =

From cust In db.Customers

Where cust.Country = "UK"

Select cust.CompanyName, cust.City

Why confuse programmers familiar with SQL?

SELECT [CompanyName], [City]
WHERE [Country] = 'UK'
FROM dbo. [Northwind]

Content and materials

Many different programming systems
TypeScript, Jupyter, ML/F#, Smalltalk, BASIC

Many different research methods
Design, logic, proofs, user studies

This is a new work-in-progress course
Slides on the web, but no textbook

Credit / zapocet

Small independent
or group project

Jsing any of the
covered method

Described in a brief
report (5 pages)

Deadlines
Topic by January 8
Draft by February 28

Programming languages
Conventional topics

Language paradigms

| | PROGRAMMING
e Functional, OOP Logic, etc. LANGUAGES:
e Their fundamental concepts Fondarancls 8

v @.

e [Nteresting ‘extreme’ designs

JEAN E. SAMMET feusc GSYS

Language features

e \ariable scoping, pointers
e [ambda abstraction, inheritance
e Design and implementation

Theory and implementation

Parsing and automata

e Theory of formal grammars
e Parser implementation
e Computability theory

Compilers and interpreters

e Implementation technigues
e Register allocation
e Meta-circular interpreters

- Compilers

Principles, Techniques,
odids and Tools

=

=

Alfred V.Aho _#
Ravi Sethi ‘
Jeftrey D. Ullman

Why is this
not enough?

Talks about "what'
but not about "how"

Treat design as a
research problem!

What can we study
about programming
systems?

As a research discipline

What is design?

Design is the intentional
solution of a problem, by
the creation of plans for a
new sort of thing, where
the plans would not be
immediately seen, by a
reasonable person, as an
iInadequate solution.

Parsons (2015)

Designerly ways

Sciences study natural world
e By experiment, aiming at truth

Designerly Ways
of Knowing

Humanities study experience
e By analogy, aiming at justice

Design studies the artificial
e By synthesis, aiming at appropriateness

Cultures of programming
Common ways of thinking

Unsoundness by design

e Type checking limitations!
e |t's afeature notabug?
o tinyurl.com/nprg0/5-ts

Design questions

e \What research methods to use?
e [s partial soundness a thing”

e |s there a better design?

e \What does "better mean?

https://github.com/Microsoft/TypeScript/issues/9825#issuecomment-234115900

Engineering culture E——

message.
console. [e] Symbol

e Programs are complex systems T

© codePointAt

e T00ls can help us cope

© includes
@ index0f

e Careful balance of trade-offs

& length
& localeCompare

@ match

Mathematical culture

e Programs as formal entities
e |ike good mathematics...
e Safe, composable, elegant

Humanistic culture

e Augmenting human intellect
e Programming helps us think
e | anguage close to human concepts

Hacker culture

e Programs are fundamentally bits
e DO not restrict the programmer
e Convenience, but full access

Different perspectives

9 Safety is the very essence of types!

A, Useful as long as it makes programming easier
&¥* Sometimes, you need to break the rules

A& Does it help programmers think better?

Research methods
Interdisciplinary research

Evaluation Requirements
Performance evaluation .

User experiments and C re atlon
Case studies Interviews

Expert evaluation Corpus studies

Formalism and proof Natural Programming
Qualitative user studies Rapid Prototyping

Figure 1. A typical design process

Interdisciplinary
programming
language research

Creating designs
Interviews, prototyping,
formalism, analysis, history

Evaluating designs
Qualitative and guantitative

BRI QR 5988

Based on A (5-3)

terms:

X variable
Ax:T.t abstraction
tt application
values:

Ax:T.t abstraction value
types:

T-T type of functions
contexts:

%} empty context
I[,x:T term variable binding

Evaluation
t — t)
Tt — t] t2
t —t)
V] t) — V) t’z

t—t

(E-App1)

(E-Appr2)

(AX :Typ - t12) V2 — [x — v2]ti2 (E-APPABS)

Typing
x:TeTl
F=x:T

ILx:TiEt: T
I'EAX:T1.t2 t T1—=T>

I t) = TllﬂTlg T~ to :Tll

'ty tp: T2

(T-VAR)
(T-ABS)

(T-App)

Figure 9-1: Pure simply typed lambda-calculus (A)

Prove properties about
small formal models

‘Well-typed programs
do not go wrong

Discover and avoid
subtle mistakes!

fx | =AVERAGE(DataSheet!A2.02) =AVERAGE(DataSheetlA5:D5)
{ Rect3 v Rect3 v
C | widh Height Width Height
115 38 1000 1 38
2 8 1020 2 68
3 3 15 83
4 4 15 59
5 5 [i5 b2
6 L 6
7 7
8 8
9

Human-centric
system design

User studies,
guestionnaires,
Interviews, etc.

Qualitative analysis to
design & test ideas

Quantitative analysis to
compare designs

History of

Flle Edlt Go Tools Objects programming

What interesting past
ideas were |ost?

And the socio-political

D1L_|C]2

: I-] E :E reasons for that?

“Weekly Cal3 Monthly Cali Notepad

| e L Use history as source

for new design ideas!

Conclusions
What to expect

Preliminary structure

Design - Design and pattern languages

Usability - Human-centric language design
Semantics - Formal models of programming
Types - Types and type safety proofs

Beyond - Unexpected perspectives on types
Paradigms - History and programming systems
Complementary - Learning from past systems
Cognition - How humans think about programming

Jeremy Singer on Notebooks

e Notes on Notebooks: Is Jupyter the
Bringer of Jollity?
e Available at;

Nttp//www.dcs.gla.ac.uk/~jsinger/notebooks. pdf

Why should you read this?

e You'll get more out of the lecture...
e Perfect for the morning tram ride :-)
e Notebooks are curious programming systems!

http://www.dcs.gla.ac.uk/~jsinger/notebooks.pdf

How to do research about
programming language design?

e Inherently interdisciplinary topic
e L Ogic, design, user studies, history & morel!

Tomas Petricek, 309 (3rd floor)

™ petricek@d3s.mff.cuni.cz

© Nnttps//tomasp.net | @tomaspetricek

© nttps//d3s.mff.cuni.cz/teaching/nprg0/5

mailto:petricek@d3s.mff.cuni.cz
https://tomasp.net/
http://twitter.com/tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg075

References
Methodology

o Coblenz, M, et al (2018). Interdisciplinary

orogramming language design. ACM Onward!
e Parsons, G. (2015). The philosophy of design. John Wiley & Sons
o Cross, N. (2007). Designerly ways of knowing. BIRD

Assorted examples

e Marasoiu, M. et al. (2019). Cuscus: An end user
orogramming tool for data visualisation. Springer
e Pierce, B. C. (2002). Types and programming languages. MIT Press
o Petricek, T, Jakubovic, J. (2027). Complementary science of
interactive programming systems. HaPoC
o Petricek, T. (2017). Context-aware programming
languages. University of Cambridge

https://dl.acm.org/doi/pdf/10.1145/3276954.3276965
https://www.wiley.com/en-us/The+Philosophy+of+Design-p-9780745663890
https://www.bird-international-research-in-design.org/books
https://link.springer.com/chapter/10.1007/978-3-030-24781-2_8
https://www.cis.upenn.edu/~bcpierce/tapl/
http://tomasp.net/academic/drafts/complementary
https://tomasp.net/coeffects/

