History and philosophy of programming

Tomas Petricek, 309 (3rd floor)
= petricek@d3s.mff.cunicz
(5 | (@tomaspetricek

Lectures: Monday 12:20, S/
© nttps//d3s.mff.cuni.cz/teaching/nprg0/5

mailto:petricek@d3s.mff.cuni.cz
https://tomasp.net/
http://twitter.com/tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg075

Philosophy of science
Why does it matter?

What can we learn about programming?

® What designers assume and never question
Q. How to understand odd designs of the past
I Whatis the nature of programming concepts
£ What social forces shape programming

e)
Philosophical Studies Series; ™ '

$?§ ‘ : s "‘
| /| | 4

Liesbeth De Mol - Giuseppe Primiero
Editors

Reflections on
Programming

Systems

Historical and Philosophical Aspects

@ Springer

Origins, languages,
systems, correctness

How could it have
gone differently?

Reflections on ethics,
politics, development

What If we took one
aspect as primary”

8 Methods By Entities

Try to explain How concepts
how scientists evolve & what
think and work are they”

BT : 3

. The Struct f \

SSq?edrg ructure o i Pl’OOfS and
om Refutati()ns

B Social forces

How social
aspects shape
technology

RECODING
GENDER

Paradigm shifts
Classic philosophy of science

The Structure of

\

Scientific Revolutions

Second Edition, Enlarged

Thomas S. Kuhn

Periods of normal science
disrupted by revolutions

New era with new
assumptions when the olo
ways stop working

New incommensurable
with the old thinking

Philosophy of science

Research programmes (Lakatos)

e Groups of scientists share assumptions
e Explain failures by blaming
secondary auxiliary assumptions

Against method (Feyerabend)

e NO single rule explains science
e Hard to say what is reasonablel

The Structure of a Programming

Richard P. Gabriel

Language

“I don’t want to die in a language IBM Research s
I can’t understand.” Redwood City, California USA Revolution
- Jorge Luis Borges us.ibm.com
Py { g
reamsongs.com

Abstract

Engineering often precedes science. Incommensurability is real.
Categories and Subject Descriptors A.0 [General]

General Terms Design

Keywords Engincering, science, paradigms, incommensu-
rability

In 1990, two youngand very smart computer sci-
entists—Gilad Brachaand William Cook—wrote
apivotal paper called “Mixin-based Inheritance”
[1], whichimmediatelylaid claim to being the first

scientific paper on mixins. In that paper they described look-
ing at Beta, Smalltalk, Flavors, and CLOS, and discoveringa
mechanism that could account for the three different sorts
of inheritance found in these languages—including mixins
from Flavors and CLOS. They named their new mechanism

“mixins.”

My attention was directed to this paper by Gilad Bracha
himself when he told me in Brazil at AOSD in the spring of
2011 that most Lisp people who read the paper had strong
objections to what he and William Cook had written about
Lisp and CLOS.

‘That night I pulled the paper down from the ACM server
and read it while outside enormous puffed clouds dwelled
overhead, lit from beneath by the town of Porto de Galinhas
on the Brazilian coast; the smells of burning sugarcane and
bilter ocean pushed into my room.

Permission to make digital or hard copies ofall or part of thiswork
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
Omward! 2012, October 19-26, 2012, Tacson, Arizona, USA.
Copyright © 2012 ACM 978-1-4503-1562-3/12/10...$15.00.

Mixin-based Inheritance

Abstract

b [rerrT— =

Engineering,) A Path To Science

Engineers build things; scientists describe reality; philoso-
phers get lost in broad daylight.

What I read in Brazil reminded me of my quest to dem-
onstrate that in the pursuit of knowledge, at least in software
and programming languages, engineering typically precedes
science—that is, even if science ultimately produces the most
reliable facts, the process often begins with engineering.

I believe it’s a common belief that engineers only follow
paths laid down by scientists, adding creativity and practi-
cal problem solving. Philip Kitcher, a philosopher of science
at Columbia University, in an essay for the New York Times

Gabriel 2072

-rom thinking about
Drogramming systems

RuNnNing, with evolving
state, modified interactive

To thinking about
rogramming languages

elationships in static code

W Smalltalk - Wikipedia

WIKIPEDIA

‘The Free Encyclopedia

Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate

Contribute

Help

Learn to edit
Community portal
Recent changes
Upload file

Tools

What links here
Related changes
Special pages
Permanent link
Page information
Cite this page
Wikidata item

Print/export

Download as PDF
Printable version

In other projects

x|+ - o
O B nhttps//enwikipedia.org/wiki/Smalltalk B 5% W »
Article Talk Read Edit View history | Search Wikipedia

Smalltalk

From Wikipedia, the free encyclopedia

Syntax [edit]

The adage that "Smalltalk syntax fits on a postcard” refers to a code snippet by Ralph S
Johnson, demonstrating all the basic standard syntactic elements of methods:[28129]

exampleWithNumber: x

Lyl
true & false not & (nil isNil) ifFalse: [self halt].
y := self size + super size.
#(%a #a 'a' 1 1.0)

do: [:each |

Transcript show: (each class name);
show: " '].

X <Y
Paradigm
Literals [edit] DESIgnecny
The following examples illustrate the most common objects which can be written as Developer
literal values in Smalltalk-80 methods.
Numbers. The following list illustrates some of the possibilities.
42 First appeared
-42
123.45
e Stable release
2rleelee010
16rA000

Adele Godberg and David Robson

Smalltalk

THE LANGAIAGE AND [T5 IMPLEVENTATION

Object-oriented

Alan Kay, Dan Ingalls,
Adele Goldberg

Alan Kay, Dan Ingalls,
Adele Goldberg, Ted
Kaehler, Diana Merry,
Scott Wallace, Peter
Deutsch and Xerox PARC
1972; 50 years ago
(development began in
1969)

Smalltalk-80 version 2 /
1980; 42 years ago

‘Smalltalk is an object-
oriented, dynamically
typed reflective
programming
language’

What makes it
Interesting?

ical Objects’
'Text Objects

XEROX rbcaming Researc

USET SCTéenextent: 640@808 tab: 0@0. -

H FoncWindow
siirdony displagad of

EISH AT G a0 6

#HL0 CTRHE & R

ined
inalic—tndetingd

user schedule: (4 Bobd-inalic—underiinad

altostyle: Def

fomml{r‘hmr:fg

af: (OriginCury
[user waith

HHCO CTOILE & TIEW
yourfone < Fone
max: 177 ag

Creamio Cream 12

TimesRomand TimesRoman10 TimesRoman12
Helvetical8

Gachald®

Hippo10 = GLRESEGYNISKSUYOTBPO TVOX Y

Mathio —Foe0t+ A=2{£3FAOO00ACSOS LA EI<E2E

W /oY ECVIFCZCID D6 Fx SR% LUVEX M LK

202 AN LIl —eFE@ AR NP N-KLH

Smalltalk as a
programming
system

Think not about source

code, but about
evolving system state!

Smalltalk /2 and /8

Welcome to SMALLTALK [May 37]
%to square length

do 4 % g0 length turn 99))1
do ?’2 (&) turn § square 109)}

https://smalltalkzoo.thechm.org/HOPL-St72.html
https://smalltalkzoo.thechm.org/HOPL-St78.html

Programming system view

B Image-based persistence rather than source
B Application ships with developer tools
M Class browser allows inspecting & editing

~ Reflection lets the system change itself

LISP language

~Functional programming language
derived from the lambda calculus?

LISP 15 OVER HALF A | | T WONDER IF THECYCLES THES!; ARE YOUR
CENTURY QLD AND 1T | [WILL CONTINUE FOREVER FATHER'S PARENTHESES

STILL HAS THIG PERFECT | [M————o ——1 | 22

TIMELESS AIRABNUTIT.

A FEW CODERS FROMEACH
NEW GENERATION RE-
DISCOVERING THE LISP ARTS.

WEAPONS
FOR A MORE... CIVILZED AGE.

Time-sharing

* Batch processing inthe 1950s &
o TX-0('58)allowed interactive use
e Multi-user machines via teletype |

Al research requirements

e Programming with symbolic data
e |nteractive experimentation
e Programs that improve themselves

*EDITF(APPEND)

EDIT
*(P p 19p) ‘

(LAMBDA (X) Y (COND ((NUL X) 2z) (T (CONS (CAR) (APPEND (CIR X ¥))))))
*(3)
*(2 (X Y))

*p
(r.avMBDA (X Y) (COND & %))

(Deutsch, 1967)

Interactive program
editing on the terminal

Teletype, not a screen!

Print using: P
Delete child: (3)
Replace child: (2 ..)

PILOT (1966)

e Edit code via list transformations
e Advising to enhance procedures 4 Nv
e Modifying state of a running system I@ ,,;

DWIM (1974)

e [nteractive program correction
e Suggests automatic fixes when error occurs
e Do What | Mean / Damn Warren's Infernal Machine

*

Symbolics Lips
Machines (1980s)

Machines optimizec
for LISP with LISP-
based environment

Persistent memaory
with just cons-cells

Response to new
hardware architecture

Paradigm shifts in programming

4 Understand what people really thought!
2 Theinvention of a programming language
Lol The shift from systems to languages

d®» ~unctional programming 'research programme'

Cvolution of programming concepts

Proofs and
Refutations

Imre Lakatos

How mathematical
concepts evolve?

Polyhedra, space, graph,
function, convergence,
measurable set

How does the definition
change and why?

Euler's formula
V-E+F=2

A polyhedron is a solid
whose surface consists of
nolygonal faces”?

Convex polygons!

Through any point in space there
will be at least one plane whose
Cross-section with the polyhedron
will consist of one single polygon.

Monster-barring

(Charles Hermite, 1893)

V-E+F=2
8-12+6=2

V—E+F=0
16 —-32 +16 =0

turn aside with a shudder of horror from this lamentable
Dlague of functions which have no derivatives.

Proofs and refutations

X Concept definitions are not constant but change

Arising from proofs, counter-examples, lemmas
a8 Monster-barring and exception-barring
IX Concept stretching when understanding evolves

Concepts in programming

Change over time!

e Datatypes, logical types
e Monads and raillway’ metaphor
e Processes become abstract

Multiple forces for change

e New Implementation of the concept
e Different metaphor for thinking
e New formalization in a proof

Evolution of types

Implementation & formal modality
Data types like records, modelled as sets Types and

Programming

Implementation modality evolves Languages

Abstract data types for modularity
Type checking ala lambda calculus

Intuitive modality evolves

Well-typed programs do not go wrong
New type systems based on this

Implementation modality evolves
Types for documentation and editor tooling

What are monads

e Origins in category theory
e Abstraction in functional programming
e Used for stateful computations

Writing about monads

e Compare how mathematicians and
orogrammers talk about monads!

e tinyurl.com/nprg0/5-mcat

e tinyurl.com/nprg0/5-mprog

https://ncatlab.org/nlab/show/monad
https://blog.ploeh.dk/2022/04/19/the-list-monad/

Formal and intuitive modality

Standard construction in algebraic topology
Monad as a '‘box" intuition

Implementation modality appears

Used for sequencing effectful computations
Definition in terms of bind and return

Implementation & intuition evolves

Monads in Haskell and the do notation
Monad as a 'sequencing’ intuition

Programming language design

< Thereis more to concepts than just a name
R [deas come from logic, linguistics, biology!
® Beware of concept stretching as with types?
E.. Capture a new intuition in the design?

Social forces
What shapes programming?

Books Journals

PROGRAMMED
INEQUALITY

Open Access Resources

IBM

The Rise and Fall

and Reinvention

of a Global Icon

James W. Cortada

Give About ContactUs

RECODING
GENDER

How' Women

d Lost Its Edge in f Computing
Computing by James W. Cortada by Janet Abbate
by Mar Hicks

ISBN: 9780262535182
Publisher: The MIT Press
Pub Date: February 23,2018

This “sobering tale of the real
consequences of gender bias™
explores how Britain lost its early
dominance in computing by
systematically discriminating
againstits most qualified workers:
women. (Harvard Magazine)

ISBN: 9780262039444
Publisher: The MIT Press
2019

ISBN: 9780262534536
Publisher: The MIT Press

Ahistory of one of the most
influential American companies of
the last century.

8,2017

‘The untold history of womenand
‘computing: how pioneering women
succeeded inafield shaped by
gender biases.

Making and Remaking the Modern
Computer

by Thomas Haigh, Mark Priestley
‘and Crispin Rope

1SBN: 9780262535175
Publisher: The MIT Press
Pub Date: January 26,2018

The history of the first

Making IT Work

A istory o the Computer Services

Jefirey R

AHistory of the Computer
Services Industry

by Jeffrey R. Yost

ISBN: 9780262036726

Publisher: The MIT Press

Pub Date: October 6, 2017

The evolution of the multi-billion-
dollar computer services industry,

Christopher Tozzi
Jonathan Zitrain

+ <a_history>
+ <of_the>

+ free_and

+ | open

+ sofeware,

+ <revolution>

AHistory of the Free and Open
Source Software Revolution

by Christopher Tozzi

Foreword by Jonathan L. Zittrain
ISBN: 9780262036474

Publisher: The MIT Press

Pub Date: August 11,2017

d cloud

and use toits afterlife as apart of
computing folkdore.

computing, with case studies of
important companies.

movement, fromits origins in hacker
culture, through the development of
GNUand Linux, toits commercial
use today.

Social history
of computing

How commercial
interests or gender bias
shape computing

Redefinition of
programming as more
masculine software
engineering in the 1960s

Structured programming

T COULD RESTRUCTURE | | EH, SCREW GOOD PRACTICE.
THE PROGRAMS FLOW | | HOW BAD CAN 1T BE?

CR ljSE ONE LITTLE goto main-sub3;
GOTO" INSTEAD. Iy

\
é%ﬂ {g [i *COMP|LE*

The quality of programmers is a
decreasing function of the density
of go to statements in the programs
they produce.

Problems with goto

e Hard to reason about informally

e Hard to reason about formally

e Code structure does not match
runtime behaviour

Edgar Dijkstra: Go To Statement Considered Harmful

Go To Statement Considered Harmful

Key Words and Phrases: go to statement, jump inatruction,
branch instructi ditional clause, alternativ

mva clnuse, program intelligibility, program sequencing
CR C: 4.22,5.23,5.24
Epior:

For a number of years I have been familiar with the observation
that the quality of programmers s a decreasing function of the
density of go to statements in the progeuns they produce. More
recently T discovered why the use of the go to statement has such
disastrous effects, and I beeame convineed that the go to statc-
meat should be abolished from all “higher level” programming
languages (i.e. everything except, perhaps, plain machine code).
At’that time T did not sttach too much mportaace to chis dis
covery; L now submic my considerations for publication because
in very recent discussions in which the subject turned up, T have
been urged to do so.

My first remark is that, slthough the programmer’s activity
ends when he hus constructed a correct program, the process
taking place under control of his program is the true subject
matter of b ity, for it is this process that has Lo aceomplish
the desired effect; it is this process that in its dynamic behavior
has to satisfy the desired sperifications. Yet, once the program has
been made, the “making” of the corresponding process is dele-
gated to the machine.

My second remark is that our intelloctual powers are rather
geared to muster static relations and that our powers to visualize
processes evolving in time are relatively poorly developed. For
that reason we should do (a3 wise programmers aware of our
limitations) our utmost to shorten the conceptual gap between
the static program and the dynamic process, to muke the cor-
respondence between the program (spread out in text space) and
the process (spread out in time) as trivial as possible,

Lot us now consider how we can characterize the progress of a
Process. (You may think about this question in u very concrete
menner: suppose. that a process, considered as a time succession
of actions, is stopped after an arbitrary action, what data do we
Bave {0 fix in order that we can redo the process until the very
same point?) If the program text is a pure concatenation of, suy,
sssignment sLutements (for the purpose of this discussion regarded
& the descriptions of single actions) it is suficient to point in the
Program text to a point between two successive action descrip-
tions. (In the absence of go to stalements I can permit myself the
syntactic ambiguity in the last three words of the previous sen-
tence: if we parse them as “successive (action descriptions)” we

D successive in text space; if we parse as * (successive action)
descriptions” we mean suct in time.) Let us call such a
Pointer to a suitable place in the ext a “textu index.”

When we include conditional clauses (if B then A), alternative
tlauses (if B then Al else A2), choico clauses as introduced by
C. A. R. Honre (caselil of (41, 42, -+, 4n)), or conditional expres-
sions as introduced by J. McCarthy (, B2 — £2,

Bn — En), the fact remains that the progress of the process r
Mains characterized by a single textual index.

As soon as we include in our language procedures we must admit
that a single textual index is no longer sufficient. In the case that
® textual index points to the interior of a procedure body the

Volume 11 / Number 3 / March, 1968

Edgar Dijkstra: Go To Statement Considered Harmful

dynamic progress is only characterized when we also give to which
call of the procedure wo refor. With the inclusion of procedures
we can characterize the progress of the process via s sequence of
textual indiccs, the length of this sequence being equal to the
dynamic depth of procedure calling.

Let us naw consider repetition clsuses (like, while B repoat 4
or repeat A until B). Logically speaking, such clauses are now
superfluous, because wo ean express repetition with the aid of
recursive procedures. For reasons of realism I don’t wish Lo ex-
clude them: on the one hand, repetition clauses ean be implo-
mented quite comfortably with present day finite equipment; on
the other hand, the ressoning pattern known as “induction’
makes us well equipped (o retain our intellectual grasp on the
Processes generated by repetition cluuses. With the inclusion of

he repetition clauses textual indices are no longer sufficient to

describe the dynamic progress of the process. With each entry into
2 repetition clause, howover, we can sssociate 3 so-called “dy-
namic index,” inexorably counting the ordinal number of th
corresponding current repetition. As repeition clauses (just as
procedure calls) may be applied nestedly, we find that now the
progress of the process can always be uniquely characterized by a
(mixed) sequence of Lextual und/or dynamie indices.

The main point is that the values of these indices are outside
programmer's control; they are generated (either by the write-up
of his program or by the dynamic evolution of the process) whether
he wishes or not. They provide independent coordinates in which
Lo deseribe the progress of the process.

e need such independent coordinates? The resson
is—and this seems to be inherent to sequential processes—that
we can interpret the value of & variable only with respect to the
Progress of the process. If we wish to count the number, 7 say, of
people in an initially empty room, we can achieve this by increas-
ing 7 by one whenever we see someone entering the room. In the
in-bevween moment that we have observed someone entering the
room but have not yet performed the subsequent incresse of n,
its value equals the number of people in the room minus ono!

The unbridled use of the go to statement hes an immediato
consequence that it becomes torribly hard to find « meaningful set
of coordinates in which to deseribe the process progress. Usually,
people take into account as well the values of some well chosen
variables, but this is out of the question because it is relative to
the progress that the meaning of these values is to be understood!
With the go to statement. one can, of course, still describe the
progress uniquely by a counter counting the number of actions
performed since program start (viz. kind of normalized clock).
The diffieulty is that such a coordinate, although unique, is usterly
unhelpful. Tn such a coordinate system it becomes an extremely
complicated affsi to defue all those poinis of progress where,
say, n equals the number of persons in the room minus on

"he go Lo statoment as it stands is st oo primitive; it is too
much an invitation to make a mess of one’s program. One can
regard and appreciate the clnuses ccnmdered as bridling its use. T

t claim that the d are exh in the sense
i ey wil aatinfy all need, It whatever elauaes are sugested
(e-g- abortion clauses) they should satisfy the requirement that a
programmer independent coordinate system can be maintained to
describe the process in a helpful and manageable way.

1t is hard to ond this with & fair acknowlodgment. Am I to

Communications of the ACM 147

s=1;1=1; s=1i=1;

Not obvious at the time! /
e bveryone used to assembly! LT

e Can the compiler optimize code? | miw: L2: poinsloy

e [S it possible to avoid gotos?

Structured Programming Theorem (1966)

Js converts waved this interesting bit of news under the
noses of the unreconstructed assembly-language

programmers who kept trotting forth twisty bits of logic and
saying, | betcha can't structure this.

DATAMATIAN.

DECEMBER, 1973
volume 19 number 12
This issue 137,600 copies

revolution in programming

According to guest editor McCracken, structured programming is a major intellectual
invention that will revolutionize the- way programs are produced. Our articles on this
subject approach the issue in several ways. Before reading them, be sure to read the over-
view.

50 Revolution in Programming: An Overview
DANIEL D. MC CRACKEN

52 Structured Programming 55 Structured Programming: Top-down Approach
JAMES R. DONALDSON EDWARD F. MILLER, JR. and GEORGE E. LINDAMOOD

62 A Linguistic Contribution to GOTO-less
Programming
R. LAWRENCE CLARK

58 Chief Programmer Teams
F. TERRY BAKER and HARLAN D. MILLS

What is structured
programming and how
to do it in practice

~rom engineering
concept to managerial
concept

Top-down management technique

d®p Structured programming for organizing people
9 Chief-programmer leading & dividing code

ésa Supported by programmers, secretary, backup
@) Hostile exchanges between Dijkstra and Mills

AMA Zon) _

’/4 S e
lr
’:'?'A

v, Sl

A\ 7 7

AN 5% |

S ool !'

‘ G N T GG 'L’.
3o ¥a, P “- '= -

Any organization that
Lo omamnay - designs a system will
1 produce a design whose
structure is a copy of the
organizations

d communication structure.

Programming language design

@’ |anguage features linked to social structures
S Organizational structure and escape hatches
& Structured, microservices, information hiding
@. Origins of languages - COBOL, Fortran, Algol

Conclusions
History and philosophy

Evaluation Requirements

Performance evaluation .

User experiments and Cr € atlon
Case studies Interviews

Expert evaluation Corpus studies

Formalism and proof Natural Programming
Qualitative user studies Rapid Prototyping

Figure 1. A typical design process

Learning from the past

Complex reasons why &
now programming ideas
work and do not work

10 PRINT CHRS(205.5+RND(1));
20 GOTO 10

e 15. REM Variations in Basic
e Nttps://10print.org (look for the PDF)

Why should you read this?

e Fun look at an unexpected bit of
programming history

e \What can we learn from the past?

https://10print.org/

History and philosophy of programming

e Scientific paradigms and paradigm snifts
e [Ne history of programming concepts
e HOW social forces shape programming

Tomas Petricek, 309 (3rd floor)

™ petricek@d3s.mff.cuni.cz

© Nnttps//tomasp.net | @tomaspetricek

© nttps//d3s.mff.cuni.cz/teaching/nprg0/5

mailto:petricek@d3s.mff.cuni.cz
https://tomasp.net/
http://twitter.com/tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg075

References (1/2)

Philosophy of science

e Kuhn, T.S, (2012). The Structure of Scientific Revolutions. Chicago
o Feyerabend, P. (1975). Against Method. Verso
e Lakatos, I. (1976). Proofs and Refutations. Cambridge

History & reflections

e De Mol L, Primiero, G. eds. (2018). Reflections on Programming
Systems: Historical and Philosophical Aspects. Springer

o Gabriel, R. (2012). The Structure of a Programming Language
Revolution. Onward!

o Petricek, T. (2022). Cultures of Prograrmming. Draft

e Petricek, T. (2018). What we talk about when we talk about monads

https://press.uchicago.edu/ucp/books/book/chicago/S/bo13179781.html
https://www.versobooks.com/books/442-against-method
https://www.cambridge.org/core/books/proofs-and-refutations/575FC8A6B4FAB79E649EDF5FBB9C6E10
https://link.springer.com/book/10.1007/978-3-319-97226-8
https://dreamsongs.com/Files/Incommensurability.pdf
http://tomasp.net/academic/drafts/cultures/draft-2022.pdf
http://tomasp.net/academic/papers/monads/

References (2/2)

Historical materials

o Teitelman, W. (1966). PILOT: A Step Toward Man-Computer
Symbiosis. MIT

Teitelman, W. (1974). Interlisp Reference Manual. Xerox PARC
Deutsch, P (1967). Preliminary Guide to the LISP Editor. Berkeley
Dijkstra, E. (1968). Go To Statement Considered Harmful. ACM
McCracken et al. (1973). Revolution in Programming. Datamation 12

http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-032.pdf
https://www.softwarepreservation.org/projects/LISP/interlisp/Interlisp-Oct_1974.pdf
https://www.softwarepreservation.org/projects/LISP/bbnlisp/W-21_LISP_Editor_Apr67.pdf
https://homepages.cwi.nl/~storm/teaching/reader/Dijkstra68.pdf
https://archive.org/details/bitsavers_datamation_34111538

