Mathematics and engineering of types

Tomas Petricek, 309 (3rd floor)
= petricek@d3s.mff.cunicz
© nitps//tomasp.net | @tomaspetricek

Lectures: Monday 12:20, S/
© nttps//d3s.mff.cuni.cz/teaching/nprg0/5

mailto:petricek@d3s.mff.cuni.cz
https://tomasp.net/
http://twitter.com/tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg075

Where types come from?

Use types (1900s) to
resolve logical paradoxes

p(z) true if and only if —z(z)
But p(p) If and only it —p(p)

Predicate p can be only
applied to entities of lower
type hence p(p) Is invalid

YOu PON''T EVEN smoxe!

IBM 704 FORTRAN

"Two types of variable
are also permissible;
fixed point and
floating point.

Called "'modes” in more
formal description!

Fortran

Function arguments
and results are in one
of two modes.

cTL. | PROGRAM o T SYSTEM [YT T
A SAMPLE PAYRILL ? i
PROGRAMMER OATE TOENT. 73 50
290 L
SERIAL | DATA NAME 3 [T QUANTITY | %] OESCRIPTION =
H g 3
k] HE] 8
4 6|7 22[23 2425 30[31 35,36| 38 72|
41 |0 PARTVIMEN T e 710 T AL| (/|RECORD| | | | Al
(92 | #oGRS o R i K /AR A I R R R S R A A SR R SN B U0 B AT
03, |\ &ROSS 1 LR g 1 9\(\5\)11/17171 P T IO Y SO Y A B A S A
O L WHTL e B i 7L[Lf\)JV|9L71 TS N A S T T S N A R R T B SR O B A A B B A a m a e S Or
Q5 | ALeA s Rl e kRIS R R S A I A A A A A R AT A S A A ST AT ST SR
26, | oMo EDVET I OM (| 2l | 99982090 1 e i .
Q7 || SHMSYRAMEE . CREM (2] | g [y kA AU % IR S A A A S R A A AR S AT R A
08 | RET/REMEMTIoy 4 1 | 2] 0 g g T T S S S S S B S NSO S M M .8
a9 | PREA R I T A A A A A S I A S S A A AR o
Lo\ | METAAY, s a2 Li RSN a1 *
L BOVD PYRCEHASES | 2 9\(J{I')1V,L7171 T T T T T S SO0 N S S A D rOCeS S |
L1 N N O N N (N Y B 1 Ldu1 1 L1 S TS N A T S Y
42, (GRANO TIOT AL |y | [EOAY] PELARTMENT e\ T\ OT AL | | (g
Jl RS VRN VO W S OO T S W O I I O | 1 I R Lol L1 § NS W S Wy N T U T S [N T W W S T B S T |
——

with data records

Algol language family

AL 58 and Algol 60

e Adopts term "type’ before publication
e Used just for primitive numeric types
e No explicit reference to Russell & logic

Algol 68, Pascal

o Attempts to make business-friendly language
e Add support for records and more
e Mathematical model of "types as sets’

Abstract data types

Cluand Ada inthe 19/0s

Type that can be used only
through defined operations

Basis for abstraction,
information hiding
and object-oriented
programming

Unitying ideas on types

Meta-language for a theorem prover

R Abstract data types to represent theorems
Z Type checking using methods of logic

BB Records and unions for convenience

\Viewed by different cultures

?

@)

>
@) R R
< 5 = o O
5= o 8 & 3o
O = < c 8 5.5
9
— O & L = &
5 =0 T &
— QO 5 £ O
coL sy =9

Oa <o F a

s Hacker — Mathematical

Types used for checking Types used for proving
how memory is used program properties
Fixed and floating point, Simply typed lambda calculus

but also data structures and safety proofs

A Engineering & Management

Types to support good Types as a mechanism
engineering practices for team structuring
Information hiding, editor Division of labor, control

tooling and documentation programmer access rights

&> Abstract data types in Ada and Clu
Mix of engineering and managerial approaches

Adding types to JS in TypeScript
Engineering approach, using mathematical ideas

U Type checking in ML, OCam|
Mathematical approach, using engineering ideas

& Types and ownership in Rust
Mix of hacker and mathematical approaches

Type systems
Mathematical look at types

Mathematical look at types

Types as a checking mechanism
& Rule outinvalid programs
— Defined using a formal system

< Use induction to prove properties

bw{p\@, \bmﬂdcag‘q \

e-= W le-f@[)&\%x.q le <

| L e thew 2 clse @

Yiz um | Y =y

+\,\\‘3(V\(ﬁ - Yosics } } e T I

Mg (They: g

() (plat)
Ve v i _11-e4+?,7_‘-\/1\k\/v\

“'U\‘(“'-“"ﬂ’ M«—G.\r%ﬂmg J

e (20) U ke o, o
Mex Y \—\“M-Q"/Tq-“’/“l’l

—
l \—Q,I:/l[//l-;)nrl rll_e‘z,/lr/l_

"

pe)

.t
Eeq Bt T

(e vim r\l-eq'-’Y Mee: Y

)

(Covwk)

Fif ¢, thew ¢y ele g, 1Y

Properties we may want

© Does it actually prevent bad behaviour?

A8, Can we check if a program has a given type?
W, Can we automatically infer a type?

W Does the system assign just one type?

Properties, more formally

‘ prropaviey j

derevwivacy iF ¢ =@ k¢ =t qhew @ =
S"&x‘LQiM_ WL NS ¢ '&V\r)\ Qufq,\ en
eithie @ & 2 \Jfa(we_ or I @ =t

P wleveunce QIR e owne (w T ¢

s ek Fer T ov show e s wo sudh Y

&ch&a\o{\{wr gi\/qu\ ﬁlek’\’ oue cu &a\t R \-1*‘?-'-"1’

unigueness 1 Tre: T aud Tre:y thew T=

Proofs
Type safety

Type safety

What does it mean

e 5+ (Az.z) cannot be reduced! o SRS

e Stuck when no evaluation rule applies JEEEEREEE
o Well-typed programs do not get stuck

Types and

Progress + preservation

e Safety = progress + preservation
e Reduction preserves the type
o Well-typed expression is value or can be reduced

(&omw&musﬂ

progvess i ket dew eithenr e i

Al \(a‘uu@_ o 1@. e —

D\"e govuatiown Lorerk a\,\)\ e — o

e alse [Tee 7Y

ey iF rert ok e e thew

ety @ s value ow & & —

What to expect

e Almost always by induction
e Easy with the right property
e LOts of uninspiring cases

Proofs by induction

By

(*) one of the following holds.

case Jef, s (e,s) — (ef,s").

Then by (opl) we have (e; + e, s) — (e] + eg, s’), s0 we ar

ase e is a value. By (*¥) one of the following holds.

case Je), s (e, s) — (€}, s").
Then by (0p2) (e + €2, 8) — (e1 + €3, 8"), so we are
case e is a value.

(Now want to use (op+), but need to know that ¢; and ey

integers.)

e done.

done.

are really

Lemma 13 foralll',e, T, if '+ e:T, e is a value and T = int then for

some n € 7 we have e = n

Proof By rule induction. Take ®'(T', ¢, T') = ((valu
n € he=n

dn € Z.e=n).
Case (int). ok

e(e) A

T =int) =

e Qver the (tree) syntax of the expression

e Over the (tree) typing derivation

e Over the (linear) sequence of reductions

Progress proof sketch

Pronvese l

T e T ther athev @ wlue o~ Je. e —

By wdacrion over fhe deviveiow of Fe:Y
= (ww) e=y iy s value
_ (\?W\) e=M.e 1 9 value
— (plus) = ter by wdvction €, . values o caw veduce.
© 0.2, values - \oy vevsion those me i, vy - veduce vsiag Lplos)
vy value A e e >a} - Yeduce Using (glos) L =+

et ume) — vedva Vsiag (plnid) | @ =ay e,
- (é\ef\ \ (o) simclov

= (LYY Guwr occavr becsase V=@

} presey vam

U’ \"‘?-"/\f fequ - ’\”\AQV\ e Y

%u\ \MJ\VL+(OV\ QV- -’r\z\Q_ JQVL\,‘;{-{D\/\ < —
= (plas) e Wty = W, [e= Vi, kw0
VoY ouek (plot) = T Fu,: v
~ (plast) fe. g, — Qi+ ey | T 40, sund o
F e Y weh &\pldxﬂ "Y=vww\ ik O EQq s ik i
By (v\J\ucmv\ NEer i al,u)\ so [k e 2, Uy

- (\3\\;5?,3 i (ap\aﬁ \ Lapp’l)t (_’au(;[;&) Sl-l/'/ll-(a\l‘

Fancy types
Interesting type systems

Interesting type systems

" Non-null, ownership & borrowing
&8 Cffects, coeffects and communication
B Specific types for web, data, etc.
R Arbitrary computations in types!

Literal string types

e Concrete values can be types too!
o Useful paired with union types
o tinyurl.com/nprg0/5-It

Design questions

e \\/Nat was the motivation this?
e [Sthere another better approach?
e \\VNat are the benefits and drawbacks?

https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#literal-types

Billion dollar mistake

Tony Hoare invents null

| call it my billion-dollar mistake. It was
the invention of the null reference in 19695. |
| couldnt resist the temptation to put it in
because It was so easy to implement.

Fixing null with types?

e Separate types that can be null
e Allow obj.foo() on non-null types!
e Null checks need special logic

Flow analysis in TypeScript

Sketch for non-null types

!Now *\;\()\\Ag !

i
i

lwall | etrel em

...{
V

(‘L\M‘-"('...I\M’/‘Yi) T

AX. s \no\\(tlen % 29e lez O

Dre (w3
(wewn) (ched&\
TEew: X Uit bxtewill = [oer*
et xl=n
“q“ (othewwie)
Mre=T"
e - boo\ re=m

rﬂ‘-e;l"\r PI—QI‘,’T

(coud™)
Tril @ then g4 eie 0,0 T

Mathematics & engineering of types

Evaluation Requirements

Performance evaluation .

User experiments and Cr € atlon
Case studies Interviews

Expert evaluation Corpus studies

Formalism and proof Natural Programming
Qualitative user studies Rapid Prototyping

Figure 1. A typical design process

Good language design
case study!

Design inspired by logic,
engineering concerns,
existing real-world code

Mathematicians care for
safety, engineering
evaluation harder to do

Type providers

e Design of types for real-world data
e See tomasp.net/academic/papers/
inforich/inforich-ddfp.pdf

Why read this

e Motivations beyond type safety
e Mechanism in F# and The Gamma
e \Why dont all typed languages have this!?

http://tomasp.net/academic/papers/inforich/inforich-ddfp.pdf

Mathematics & engineering of types

e History of types is interesting & messy
e Different cultures think differently
e [ype safety is basic formal PLT method!

Tomas Petricek, 309 (3rd floor)

™ petricek@d3s.mff.cuni.cz

© Nnttps//tomasp.net | @tomaspetricek

© nttps//d3s.mff.cuni.cz/teaching/nprg0/5

mailto:petricek@d3s.mff.cuni.cz
https://tomasp.net/
http://twitter.com/tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg075

References (1/2)

Theory and proofs

o Krishnaswami, N. (2021). Semantics of Programming Languages
o Pierce, B. (2002). Types and Programming Languages . MIT

Fancy types

e Pierce, B (ed.) (2004). Advanced Topics in Types and Prograrmming
Languages . MIT

e Honda, K. (2008). Multiparty Asynchronous Session Types. POPL

o TypeScript (2022). The TypeScript Handbook. Online

o Clarke, D. G. etal. (1998). Ownership types for flexible alias
orotection. OOPSLA

https://www.cl.cam.ac.uk/teaching/2021/Semantics/notes.pdf
https://mitpress.mit.edu/9780262162098/types-and-programming-languages/
https://www.cis.upenn.edu/~bcpierce/attapl/
https://dl.acm.org/doi/pdf/10.1145/1328438.1328472
https://www.typescriptlang.org/docs/handbook/intro.html
https://www.cs.cornell.edu/courses/cs711/2005fa/papers/cpn-oopsla98.pdf

References (2/2)

History

e Martini, S. (2016). Several Types of Types in Programming
Languages. HaPoC

e Kell, S. (2074). In Search of Types. Onward!

e Russell, B. (1903). The Principles of Mathematics. Cambridge

e Hoare, CAR. (2009). Null References: The Billion Dollar
Mistake. InfoQ

Just for fun...

e Tresnormale. Bertrand Russell: You want to be a philosopher?
You do not even smoke!

https://arxiv.org/pdf/1510.03726.pdf
https://www.humprog.org/~stephen/research/papers/kell14in-author-version.pdf
https://people.umass.edu/klement/pom/
https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/
https://tresnormale.com/collections/philosophers/products/bertrand-russell

