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Where types come from?



Use types (1900s) to
resolve logical paradoxes

p(z) true if and only if —z(z)
But p(p) If and only it —p(p)

Predicate p can be only
applied to entities of lower
type hence p(p) Is invalid

YOu PON''T EVEN smoxe!




IBM 704 FORTRAN

"Two types of variable
are also permissible;
fixed point and
floating point.

Called "'modes” in more
formal description!

Fortran

Function arguments
and results are in one
of two modes.
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with data records



Algol language family

AL 58 and Algol 60

e Adopts term "type’ before publication
e Used just for primitive numeric types
e No explicit reference to Russell & logic

Algol 68, Pascal

o Attempts to make business-friendly language
e Add support for records and more
e Mathematical model of "types as sets’



Abstract data types

Cluand Ada inthe 19/0s

Type that can be used only
through defined operations

Basis for abstraction,
information hiding
and object-oriented
programming




Unitying ideas on types

Meta-language for a theorem prover

R Abstract data types to represent theorems
Z Type checking using methods of logic

BB Records and unions for convenience



\Viewed by different cultures
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s Hacker — Mathematical

Types used for checking Types used for proving
how memory is used program properties
Fixed and floating point, Simply typed lambda calculus

but also data structures and safety proofs



A Engineering & Management

Types to support good Types as a mechanism
engineering practices for team structuring
Information hiding, editor Division of labor, control

tooling and documentation  programmer access rights



&> Abstract data types in Ada and Clu
Mix of engineering and managerial approaches

Adding types to JS in TypeScript
Engineering approach, using mathematical ideas

U Type checking in ML, OCam|
Mathematical approach, using engineering ideas

& Types and ownership in Rust
Mix of hacker and mathematical approaches



Type systems
Mathematical look at types



Mathematical look at types

Types as a checking mechanism
& Rule outinvalid programs
— Defined using a formal system

< Use induction to prove properties
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Properties we may want

© Does it actually prevent bad behaviour?

A8, Can we check if a program has a given type?
W, Can we automatically infer a type?

W Does the system assign just one type?



Properties, more formally
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Proofs
Type safety



Type safety

What does it mean

e 5+ (Az.z) cannot be reduced! o SRS

e Stuck when no evaluation rule applies JEEEEREEE
o Well-typed programs do not get stuck

Types and

Progress + preservation

e Safety = progress + preservation
e Reduction preserves the type
o Well-typed expression is value or can be reduced
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What to expect

e Almost always by induction
e Easy with the right property
e LOts of uninspiring cases

Proofs by induction

By

(*) one of the following holds.

case Jef, s (e,s) — (ef,s").

Then by (opl) we have (e; + e, s) — (e] + eg, s’), s0 we ar

ase e is a value. By (*¥) one of the following holds.

case Je), s (e, s) — (€}, s").
Then by (0p2) (e + €2, 8) — (e1 + €3, 8"), so we are
case e is a value.

(Now want to use (op+ ), but need to know that ¢; and ey

integers. )

e done.

done.

are really

Lemma 13 foralll',e, T, if '+ e:T, e is a value and T = int then for

some n € 7 we have e = n

Proof By rule induction. Take ®'(T', ¢, T') = ((valu
n € he=n

dn € Z.e=n).
Case (int). ok

e(e) A

T =int) =

e Qver the (tree) syntax of the expression

e Over the (tree) typing derivation

e Over the (linear) sequence of reductions




Progress proof sketch
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Fancy types
Interesting type systems



Interesting type systems

" Non-null, ownership & borrowing
&8 Cffects, coeffects and communication
B Specific types for web, data, etc.
R Arbitrary computations in types!



Literal string types

e Concrete values can be types too!
o Useful paired with union types
o tinyurl.com/nprg0/5-It

Design questions

e \\/Nat was the motivation this?
e [Sthere another better approach?
e \\VNat are the benefits and drawbacks?



https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#literal-types

Billion dollar mistake

Tony Hoare invents null

| call it my billion-dollar mistake. It was
the invention of the null reference in 19695. |
| couldnt resist the temptation to put it in
because It was so easy to implement.

Fixing null with types?

e Separate types that can be null
e Allow obj.foo() on non-null types!
e Null checks need special logic



Flow analysis in TypeScript



Sketch for non-null types
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Mathematics & engineering of types



Evaluation Requirements

Performance evaluation .

User experiments and Cr € atlon
Case studies Interviews

Expert evaluation Corpus studies

Formalism and proof Natural Programming
Qualitative user studies Rapid Prototyping

Figure 1. A typical design process

Good language design
case study!

Design inspired by logic,
engineering concerns,
existing real-world code

Mathematicians care for
safety, engineering
evaluation harder to do



Type providers

e Design of types for real-world data
e See tomasp.net/academic/papers/
inforich/inforich-ddfp.pdf

Why read this

e Motivations beyond type safety
e Mechanism in F# and The Gamma
e \Why dont all typed languages have this!?


http://tomasp.net/academic/papers/inforich/inforich-ddfp.pdf

Mathematics & engineering of types

e History of types is interesting & messy
e Different cultures think differently
e [ype safety is basic formal PLT method!
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