
NPRG075
Mathematics and engineering of types

Tomáš Petříček, 309 (3rd floor)



 |

Lectures: Monday 12:20, S7



petricek@d3s.mff.cuni.cz
https://tomasp.net @tomaspetricek

https://d3s.mff.cuni.cz/teaching/nprg075

mailto:petricek@d3s.mff.cuni.cz
https://tomasp.net/
http://twitter.com/tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg075

History
Where types come from?

Bertrand Russell
Use types (1900s) to
resolve logical paradoxes

 true if and only if
But if and only if
p(x) ¬x(x)

p(p) ¬p(p)

Predicate can be only
applied to entities of
lower
type hence is invalid

p

p(p)

IBM 704 FORTRAN
"Two types of variable
are also permissible:
fixed point and

floating point."

Called "modes" in more
formal description!

Function arguments
and results are in one
of two modes.

COMTRAN, FLOW-
MATIC and COBOL
Languages for
business data
processing

Built around working
with data records

Algol language family
IAL 58 and Algol 60

Adopts term "type" before publication
Used just for primitive numeric types
No explicit reference to Russell & logic

Algol 68, Pascal
Attempts to make business-friendly language
Add support for records and more
Mathematical model of "types as sets"

Abstract data types
Clu and Ada in the 1970s

Type that can be used only
through defined operations

Basis for abstraction,
information hiding

and object-oriented
programming

LCF / ML
Unifying ideas on types

 Meta-language for a theorem prover
 Abstract data types to represent theorems
 Type checking using methods of logic
 Records and unions for convenience

Types
Viewed by different cultures

History is messy!
Not just adopting

logic ideas into
programming

Are we even talking
about the same thing?

Think cultures of
programming!

 Hacker

Types used for checking

how memory is used

Fixed and floating point,

but also data structures

Cultures and types
 Mathematical

Types used for proving
program properties

Simply typed lambda calculus
and safety proofs

 Engineering

Types to support good
engineering practices

Information hiding, editor
tooling and documentation

Cultures and types
 Management

Types as a mechanism

for team structuring

Division of labor, control
programmer access rights

Cultural analysis
 Abstract data types in Ada and Clu

Mix of engineering and managerial approaches
 Adding types to JS in TypeScript

Engineering approach, using mathematical ideas
 Type checking in ML, OCaml

Mathematical approach, using engineering ideas
 Types and ownership in Rust

Mix of hacker and mathematical approaches

Type systems
Mathematical look at types

Type systems
Mathematical look at types

 Types as a checking mechanism
 Rule out invalid programs
 Defined using a formal system
 Use induction to prove properties

Defining a type system

Typed lambda calculus

Type systems
Properties we may want

 Does it actually prevent bad behaviour?
 Can we check if a program has a given type?
 Can we automatically infer a type?
 Does the system assign just one type?

Properties, more formally

Proofs
Type safety

Type safety
What does it mean

 cannot be reduced!
Stuck when no evaluation rule applies
Well-typed programs do not get stuck

5 + (λx.x)

Progress + preservation
Safety = progress + preservation
Reduction preserves the type
Well-typed expression is value or can be reduced

Type safety, formally

Proofs about types
What to expect

Almost always by induction
Easy with the right property
Lots of uninspiring cases

Proofs by induction
Over the (tree) syntax of the expression
Over the (tree) typing derivation
Over the (linear) sequence of reductions

Progress proof sketch

Preservation proof sketch

Fancy types
Interesting type systems

Fancy types
Interesting type systems

 Non-null, ownership & borrowing
 Effects, coeffects and communication
 Specific types for web, data, etc.
 Arbitrary computations in types!

Case study: TypeScript
Literal string types

Concrete values can be types too!
Useful paired with union types
tinyurl.com/nprg075-lt

Design questions
What was the motivation this?
Is there another "better" approach?
What are the benefits and drawbacks?

https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#literal-types

Billion dollar mistake
Tony Hoare invents null
I call it my billion-dollar mistake. It was

the invention of the null reference in 1965.
I couldn't resist the temptation to put it in
because it was so easy to implement.

Fixing null with types?
Separate types that can be null
Allow obj.foo() on non-null types!
Null checks need special logic

Demo
Flow analysis in TypeScript

Sketch for non-null types

Conclusions
Mathematics & engineering of types

Designing types
Good language design
case study!

Design inspired by logic,
engineering concerns,
existing real-world code

Mathematicians care for
safety, engineering
evaluation harder to do

Reading
Type providers

Design of types for real-world data
See: tomasp.net/academic/papers/
inforich/inforich-ddfp.pdf

Why read this
Motivations beyond type safety
Mechanism in F# and The Gamma
Why don't all typed languages have this!?

http://tomasp.net/academic/papers/inforich/inforich-ddfp.pdf

Conclusions
Mathematics & engineering of types

History of types is interesting & messy
Different cultures think differently
Type safety is basic formal PLT method!

Tomáš Petříček, 309 (3rd floor)



 |



petricek@d3s.mff.cuni.cz
https://tomasp.net @tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg075

mailto:petricek@d3s.mff.cuni.cz
https://tomasp.net/
http://twitter.com/tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg075

References (1/2)
Theory and proofs

Krishnaswami, N. (2021).
Pierce, B. (2002). . MIT

Fancy types

Pierce, B (ed.) (2004).
. MIT

Honda, K. (2008). . POPL
TypeScript (2022). . Online
Clarke, D. G. et al. (1998).

. OOPSLA

Semantics of Programming Languages
Types and Programming Languages

Advanced Topics in Types and Programming
Languages

Multiparty Asynchronous Session Types
The TypeScript Handbook

Ownership types for flexible alias
protection

https://www.cl.cam.ac.uk/teaching/2021/Semantics/notes.pdf
https://mitpress.mit.edu/9780262162098/types-and-programming-languages/
https://www.cis.upenn.edu/~bcpierce/attapl/
https://dl.acm.org/doi/pdf/10.1145/1328438.1328472
https://www.typescriptlang.org/docs/handbook/intro.html
https://www.cs.cornell.edu/courses/cs711/2005fa/papers/cpn-oopsla98.pdf

References (2/2)
History

Martini, S. (2016).
. HaPoC

Kell, S. (2014). . Onward!
Russell, B. (1903). . Cambridge
Hoare, C.A.R. (2009).

. InfoQ

Just for fun...

Tresnormale.

Several Types of Types in Programming
Languages

In Search of Types
The Principles of Mathematics

Null References: The Billion Dollar

Mistake

Bertrand Russell: You want to be a philosopher?

You do not even smoke!

https://arxiv.org/pdf/1510.03726.pdf
https://www.humprog.org/~stephen/research/papers/kell14in-author-version.pdf
https://people.umass.edu/klement/pom/
https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/
https://tresnormale.com/collections/philosophers/products/bertrand-russell

