Human-centric language design

Tomas Petricek, 309 (3rd floor)
= petricek@d3s.mff.cunicz
© nitps//tomasp.net | @tomaspetricek

Lectures: Monday 12:20, S/
© nttps//d3s.mff.cuni.cz/teaching/nprg0/5

mailto:petricek@d3s.mff.cuni.cz
https://tomasp.net/
http://twitter.com/tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg075

Research methods
Human-computer interaction

The DESIGN

of EVERYDAY
THINGS

DON
NORMAN

Are programming
languages user interfaces?

The means by which the
dser and a computer
system interact (...)

Shifts focus on users
and interaction

Created in the
19/70s at Xerox

Metaphor as a
design principle

Move from solving
problems to building
new interfaces

@ 23 @ @ @ (B | Equipment interaction
iIncidents by trained

@G D@ @ ‘ users in World War |l

FIGURE 6-14

Tavrly s f'kd:l)vtf'\ |chf$m"‘t(s s thnklrr‘rbl19t;y7l) B S E N Des‘gn GQL_,Hpment

to minimize potential
for problems

Lab testing and
experimental

nsychology

What to study and how

@ \Whatis the most effective way of doing X?
@ What mistakes programmers make and why?
¥ Can we solve X and Y in a unified way?

R Do systems enable new user experiences?

Methodological bias

Hierarchy in science

e [heoreticians over experimentalists
e Everyone knows Einstein's equation
e Nobody Michelson—Morley experiment

Blases in computing

e Proofs are the most fundamental

e Can we measure something objective?
e RUNNING a rigorous user experiment?

o All other evaluation is 'too soft'!

Representing
ana inrervening

Infroductory
Tor

fhe

lan Hacking

Controlled experiments
Cvidence-based language design

char

_3141592654[3141

1,__3141[31417;_314159[31415],_3141[31415] ;main(Q{register char*
_3_141,*_3_1415, *_3__1415; register int _314, 31415, _31415,* 31,
_3.14159,__3_1415;*_3141592654=__31415=2,_3141592654[0][_3141592654

-11=1[__31417=5;__3_1415=1;do{_3_14159=_314=0,__31415++;for(_31415
=0;_31415<(3,14-4)*__31415;_31415++)_31415[_3141]=_314159[_31415]= -
1;_3141[*_314159=_3_14159]=_314;_3_141=_3141592654+__3_1415;_3_1415=

__3.1415 +__3141;for (_31415 = 3141-

__3.1415 ; _31415;_31415--
,—3_141 ++, _3_1415++){_314
+=_314<<2 ; _314<<=1;_314+=
*_3_1415;_31 =_314159+_314;
ifCIC*_31+1D))* _31 =_314 /
__31415,_314 [3141]=_314 %
__31415 ;* _3_.1415=_3_141
Y+= *_3_1415 = *_31;while(*
_3__1415 >= 31415/3141) *
_3__14154= - 10,(*--_3__1415
J)++;_314=_314 [3141]; if (!
3.14159 && * _3_1415)_3_14159
=1,__3_1415 = 3141-_31415;3}ifC
_314+(__31415 >>1)>=__31415)
while (++ * _3_141-=3141/314
)*_3_141--=0 ;Iwhile(_3_14159
) ; { char * __3_14= "3.1415";
write((3,1), (--*__3_14,__3 14
),(_3_14159 ++,++_3_14159))+
3.1415926; } for (_31415 = 1;
_31415<3141- 1;_31415++)write(
31415% 314-(3,14),_3141592654[
_31415 1+ "0123456789","314"
[31+1)-_314; puts((*_3141592654=0

,_3141592654)) ;_314= *"3.141592";}

-or each language
feature, determine
the best option
experimentally

How to make user
studies as rigorous
as possible?

Randomized controlled trials

Gold standard in medicine

e Compare treatments or with placebo
e Random allocation of participants
e Blinding and study pre-registration

Limitations of RCTs
e \ery hard to do properly

Dual antiplatelets after

e Answers only very limited questions TIA or minor stroke
e Even this may not be rigorous enough!

Case study: Perl vs. Randomo

action Main

number x = z(1, 100, 3) SX = &z (1, 100, 3); Main { 1 100, 3)
end x \ 21,
sub z{ }
action z(integer a, integer b, Sa = $_[0]; N ~
integer c¢) returns number Sb = $_[1]; Nzg? 30’5@ b%aec | {
number d = 0.0 Sc = s_[2]; ~ e § 0.0
number e = 0.0 $d = 0.0; @i\ a
integer i = a Se = 0.0; 4 (b - a) {
repeat b - a times for ($i = $a; 31 <= 38b; $i++){ i etof
if 1 mod ¢ = 0 then if ($i % Sc == 0) { a \Id L1
d=d+ 1 sd = $d + 1;
end 1 }
else then else { ! e{\ e 41
e =¢e + 1 Se = Se + 1;
gnd . ¥ i\ i+1
1 =1+1
end if ($d > se) { % a4 e
if d > e then $d;) 3
return d -
end else { } (
else then Se; !
return e } - ©
end } }}
end (b) Perl

(a) Quorum (c) Randomo

An Empirical Investigation into Programming Language
Syntax (Steffik, Siebert, 2013)

Getting it right

Study setup

e Copy and modify code sample
e Never programmed before
e Age, gender, language balance

Statistical evaluation

e Verifled manual rating of accuracy
e Mauchly's sphericity test
e Repeated-measures ANOVA test

While users of Quorum
were gble to program
statistically significantly
more accurately than users
of Perl (p = .047), and users
of Randomo (p = .004), Perl
Users were not able to
orogram significantly more
accurately than Randomo
users (p = .458).

Studying languages experimentally

#Z Typing discipline, syntax, errors, inheritance

© Compare two structurally similar alternatives
<82 Study participants with similar backgrounds
® Does not help with fundamentally new designs

Empirical studies
Software repository analysis

Study existing codebases

e |Ots of projects on GitHub
e Commit history, bug reports, etc.

What can we study?

What leads to fewer bugs?
How OSS contributors behave
How code gets duplicated and reused?
Code guality and code structure

A Large Scale Study of Programming Languages
and Code Quality in Github

Baishakhi Ray, Daryl Posnett, Vladimir Filkov, Premkumar Devanbu
{bairay@, dpposnett@, filkov@cs., devanbu@cs.}ucdavis.edu
Department of Computer Science, University of California, Davis, CA, 95616, USA

ABSTRACT

What is the effect of programming languages on software qual-
ity? This question has been a topic of much debate for a very long
time. In this study, we gather a very large data set from GitHub
(729 projects, 80 Million SLOC, 29,000 authors, 1.5 million com-
mits, in 17 languages) in an attempt to shed some empirical light
on this question, This reasonably large sample siz allows us o use
a mixed-methods approach, combining multiple regression model-
ing with visualization and text analytics, to study the effect of lan-
suage features such as static v.s. dynamic typing, strong v.s. weak
typing on software quality. By triangulating findings from differ-
ent methods, and controlling for confounding effects such as team
size, project size, and project history, we report that language de-
sign does have a significant, but modest effect on software quality.
Most notably, it does appear that strong typing is modestly better
than weak typing, and among functional languages, static typing is
also somewhat better than dynamic typing. We also find that func-
tional languages are somewhat better than procedural languages. It
is worth noting that these modest effects arising from language de-
sign are overwhelmingly dominated by the process factors such as
project size, team size, and commit size. However, we hasten to
caution the reader that even these modest effects might quite possi-
bly be due to other, intangible process factors, ¢.g.. the preference
of certain personality types for functional, static and strongly typed
languages.

Categories and Subject Descriptors

D.3.3 [PROGRAMMING LANGUAGES]: [Language Constructs
and Features]

General Terms

Measurement, Experimentation, Languages

Keywords

programming language, type system, bug fix, code quality, cmpiri-
cal rescarch, regression analysis, software domain

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
hear this notice and the full citation on the first page. To copy otherwise, (0
republish, (o post on servers or o redistribute to lists, requires prior specific
ion and/or a fee,
E" 14 November 164A$22, 2014, Hong Kong, China
Copyright 2014 ACM 978-1-4503-3056-5/14/11 ...515.00.

1. INTRODUCTION

A varicty of debates ensue during discussions whether a given
programming language is “the right tool for the job". While some
of these debates may appear to be tinged with an almost religious
fervor, most people would agree that a programming language can
impact not only the coding process, but also the propertics of the
resulting artifact.

Advocates of strong static typing argue that type inference will
catch software bugs carly. Advocates of dynamic typing may argue
that rather than spend a lot of time correcting annoying static type
errors arising from sound, conservative static type checking algo-
rithms in compilers, it’s better to rely on strong dynamic typing to
catch errors as and when they arise. These debates, however, have
largely been of the armchair variety; usually the evidence offered
in support of one position or the other tends to be anccdotal.

Empirical evidence for the existence of associations between code
quality programming language choice, language propertics, and us-
age domains, could help developers make more informed choices.

Given the number of other factors that influence software en-
gineering outcomes, obtaining such evidence, however, is a chal-
lenging task. Considering software quality, for example, there are
a number of well-known influential factors, including source code
size (8], the number of developers [29,[3], and age/maturity [13].
These factors are known to have a strong influence on software
quality, and indeed, such process factors can effectively predict de-
fect localities [25].

One approach to teasing out just the cffect of language prop-
crtics, even in the face of such daunting confounds, is to do a
controlled experiment. Some recent works have conducted exper-
iments in controlled settings with tasks of Timited scope, with stu-
dents, using languages with static or dynamic typing (based on ex-
perimental treatment setting) [11, ?,[15]l. While type of controlled
study is “El Camino Real to solid empirical evidence,another op-
portunity has recently arisen, thanks to the large number of open
source projects collected in software forges such as GitHub.

GitHub contains many projects in multiple languages. These
projects vary a great deal across size, age, and number of develop-
ers. Each project repository provides a historical record from which
we extract project data including the contribution history, project
size, authorship, and defect repair. We usc this data to determine
the effects of language features on defect occurrence using a variety
of tools. Our approach is best described as mixed-methods, or tri-
angulation [7] approach. A quantitative (multiple regression) study
is further examined using mixed methods: text analysis, cluster-
ing, and visualization. The observations from the mixed methods
largely confirm the findings of the quantitative study.

Large scale corpus study

'It) appear|s| that 'strong
typing is modestly better
than weak typing, anc
among functional
languages, static typing is
also somewhat better than
dynamic typing.”

The R Register

Software

Boffins debunk study claiming certain

languages (cough, C, PHP, JS...) lead Attem pt tO rep rOd U Ce

to more buggy code than others

Hard evidence that some coding lingo encourage th e St U d y m O St | y fa | | e d

flaws remains elusive

By Thomas Claburn in San Francisco 30 Jan 2019 at21:45 154(J) SHARE ¥

' believe [it does] in my
neart of hearts, but it's
kind of an impossible
experiment to run.’

Tempting through it may be to believe that certain programming
languages promote errors, recent research finds little if any evidence of
that.

A scholarly paper, "A Large Scale Study of Programming Languages and
Code Quality in Github," presented at the 2014 Foundations of Software
Engineering (FSE) conference, made that claim that some computer
languages show higher levels of buggy code, setting off a firestorm of
developer comment.

How to and limitations

| 0ts of code on GitHuD Is useless
—OCUS on somewhat sensible projects!

3N

\Viany hidden factors to account for
8la Avoid comparing apples and oranges
P Studying semantics and runtime is harad

Usability evaluation
Considered harmtul

Cultural adoption
(Greenberg et al. 2008)

‘Usabllity evaluation is
appropriate for settings
with well-known tasks
and outcomes. They
fail to consider how
novel systems wil
evolve and be adopted
Dy a culture over time.’

Tricky to evaluate

Early designs

e Purely explorative sketches
e (etting the right design vs.
Getting the design right

Cultural adoption

e Hard to imagine future uses
e Firstradio and automobiles
e Memex, Sketchpad and oNLine System

Evaluating user

interface research
(Olsen, 2007)

Lively research field in
the 1970s and 1980s

Ubiquitous computing
challenges the classic
desktop metaphor

Increasing number
of non-expert
programmers!

New system and languages

€3S e

Reduce time to create new solutions
| egst resistance to good solutions
_owering skills barrier of users

Power In common unified infrastructure

Simplifying programming
Data exploration tools

O & nttp nytimes.com/interact 6/0 orts/olympics/history-olympic-dominance-chartshtml B ¥ 9 L »

© HOME Q SEARCH Ehe New York Times o

Rio2016

A Visual History of Which Countries

Have Dominated the Summer Olympics

By GREGOR AISCH and LARRY BUCHANAN UPDATED August 22, 2016

boy _ D
Olyr i cow ‘/ .
) United States
China
— Vot Russia
United States o Soviet Union /= Yean/
+ = o Britain
No —East Germany Australia
Olympic 5 France
Games
held
World during
War | Worl
War Other countries in Europ:
Oth, A

n X
>

Data transformations
Jsing various online
data sources

T00 hard for Excel, too
complex in Python or R

Getting it right is very
time-consuming!

Data exploration in The Gamma

@ Playground | The Alan Turing In= x [-

< C @ turing.thegamma.net/playground/ Qe % O a

let data =
olympics
.'filter data'.'Games is'.'Rio (2016)'.then
.'group data'.'by Athlete'.'sum Gold'.then
.'sort data'.'by Gold descending'.then.paging.take(5)

.'get series'.'with key Athlete'.'and value Gold'.reverse() ‘ a n n O n —eX p e rtS

compost.charts.bar(data)
.setAxisY(labelOffset=100, label="").setSize(height=300) . ?
.setTitle("Top medalists (by number of gold medals) at Rio 2016") a C U a y U Se | .
Top medalists (by number of gold medals) at Rio 2016

'S [T better than
spreadsheets”?

Simone Biles

Katinka Hosszu

What desirable

. design characteristics
does it have?

Evaluating programming systems

e Programming tool for journalists
e Olsen's framework for Ul systems
o tinyurl.com/nprg0/5-ui

Design questions

e \What possible claims can we make?
e \\Vhat evaluation errors to avoid?

https://people.cs.uchicago.edu/~brianhempel/Evaluating%20User%20Interface%20Systems%20Research%20-%20Graphical%20Summary.pdf

Methods review
Fvaluating programming systems

n
Evaluating
4 Loan - Microsoft Visual Basic [design]]
File Edit View Insert Bun Toolz Addlns Help
o] Slal | SISl o o el [. H Cl too I kltS

" LoanSheet =13

5 = (Ledoetal, 2018
—

. Amount

. Percent
. Down

. ~Years in Loan

_ | | Research claims made
| N publications about Ul

Maximum % Ic - -
anSheet [_[O]x]

: Minimum % I: Object: IgldPa_vmenls j Proc: ICIick j IgldPa_vmenls i ‘to O ’ k | ‘t S et C
Private Z3ub grdPayments Click() j) .

X . — i GridLines True
: Show Paymer | ' Only act if & cell contains & payment.

GridLinet/idth |1
. If grdPayments.Text <> "" And lmortFlag Height 1515
i Show Amortiza ' Enable the Show Amortization butto HelpContextiDl | 0
codCalcimort.Enabled = True HighLight Falze T
Else Index e :;Eil | Ie Wor S Or
' Di=zable the Show Lmortization butt Left 2655
codCalcimort.Enabled = False Mouselcon [Mane]

End If MousePointer | 0 - Default

i i o] l@anguages, libraries,
S — tools, frameworks,

\What claims can we make?

B Demonstrations - show what is possible
B8 Usage - study actual system use
il Performance - evaluate how well it runs

i&¢ Heuristics - expert rules of thumb

B Showinga Efb Replicating @i Presenting
novel example past examples case studies

Rio2016

A Visual History of Which Countries
Have Dominated the Summer Olympics

Can do some- System makes Show usability of
thing previously previously very g system in a
unthinkable hard thingeasy range of situations

Demo or Die!

MIT
para
"bub

Media Lab
phrasing of

ish or perish’.

Aspen Movie Map
The 19/8 precursor of
Google Street View

Demo of a radically

new

technology

Varv: Reprogrammable Interactive Software as a Declarative
Data Structure

Marcel Borowski Luke Murray Rolf Bagge
marcel.borowski@cs.au.dk Ismurray@mit.edu rolf@cavi.au.dk
Aarhus University MIT CSAIL Aarhus University
Aarhus, Denmark Cambridge, United States Aarhus, Denmark
Janus Bager Kristensen Arvind Satyanarayan Clemens N. Klokmose

jbk@caviau.dk arvindsatya@mit.edu clemens@cs.au.dk
Aarhus University MIT CSAIL Aarhus University
Aarhus, Denmark Cambridge, United States Aarhus, Denmark

Todo List

A o Todo

. Todo List
Add New Todo

[Add Toda
Todos

Write up the abstract Delete

Write conclusion Delete.

(ON. ®

Figure 1: Varv Examples: (a) A todo list web application that is inherently extensible. Here, a basic todo list is extended with the
ability to complete and delete todos by adding two new concept definitions and new modified template definitions. (b) A board
game toolkit that defines abstractions for board game logic. The games “Checkers” and “Othello” were implemented with
the toolkit and then merged into a new “Checkers-O-Thello” game with the addition of a short concept definition. As Varv
applications are represented as data structures, higher-level tooling can be developed including a block-based editor (right),
an inspector to go from an element in the view to the corresponding template or data (context menu to the left), and a data

inspector for live editing application state (middle).

Borowski et al. 2022

Makes all information
visible and modifiable

Affects the whole
developer workflow

Case studies to
illustrate the effects

Demonstrate workflow

e [WO concrete usage scenarios
e Step by step description of work
e Using personas for concreteness

(a) The UI Designer. (b) The Computational Notebook.

Potential of the system

e Implications of the design
e Debugging, authoring, tools
e Notebooks, blocks, VS Code, etc.

<«

C & thegamma-sample-web.azurewebsites net/study htmi?stud

The Gamma: User experience study

worldbank.byCountry. 'United Kingdom'

. "Econom: y & Growth'.'GDP per capita (current US$)'

worldbank.byCountry.Germany

. 'Econom y & Growth'.'GDP per capita (current US$)'

worldbank.byCountry.'Czech Republic'

. 'Econom y & Growth'.'GDP per capita (current US$)'

[## The code is good and returns data we can visualize!

50000

40000

30000

20000

10000

0

1950

1970

1990

2010

2030

2050

(Petricek, 2022)

Can non-programmers
really use the system?

Get non-programmers,
ask them to try anc
watch and notel

Task Kind Done Notes
#1 expenditure cube o Obtained one of two data series
#2 expenditure cube ([J Explored furhter data series independently
#3 expenditure cube (] Explored further data series independently
#4 expenditure cube) Completed following a hint to use another member
#5 expenditure cube ([J Explored further data series independently
#6 worldbank cube ‘] Completed after a syntax hint about whitespace
#7 worldbank cube ([J Completed very quickly
#8 worldbank cube ([J Completed, but needed longer to find correct data
#9 lords table “) Struggled with composition of operations
#10 lords table [Completed very quickly
#11 lords table o With a hint to avoid operations taking arguments
#12 olympics table ‘] With a hint to avoid operations taking arguments
#13 olympics table “) With hints about ‘then’ and operations taking arguments

Table 1. Overview of work completed by individual participants in the study.
The marks denote: @ = completed, @ = required some guidance, @ = partially completed

13 participants from
business team of a
research institute

Asked to complete
1 of 4 different tasks

Fvaluated using activity
l0ogging, observation
and interview

Usage evaluation

Possible setup

e Complete a given task
e Observe, log & record

A/B comparison of variants
In the lab or in the wild

Collecting feedback

e Complete a questionnaire
e Ask to comment (Think aloud)
e Semi-structured interview afterwards

FILE EDIT VIEW GIT PROJECT DEBUG TEST ANALYZE TOOLS EXTENSIONS ~ WINDOW HELP

-SBE|9-

slides.fsx & X

P Attach...

Solution1 O

- B 8.

|& Live Share

let templ = File.ReadAllText("slides/template.html™)

let page
File.WriteAllText(out, page)
stats

glet copyStatic () =
§ let rec loop root
=] for dir in Directory.GetDirectories(root) do
loop dir
Directory.CreateDirectory(dir.Replace("slides"
for f in Directory.GetFiles(dir) do
cprint ConsoleColor.Gray "[INFO] Copying fil
File.Copy(f, f.Replace("slides", "output™))
for dir in Directory.GetDirectories("slides") do
Directory.Delete(dir.Replace("slides","output™),
loop "slides”

Ellet updateSlides ()

‘ let mutable stats = []

2. for fn in Directory.GetFiles("slides", "*.md") do
cprint ConsoleColor.Gray "[INFO] Processing slid
let out = $"output/{Path.GetFileNameWithoutExten
let res = processFile fn out
stats <- stats @ [Path.GetFileNameWithoutExtensi

copyStatic ()
for sn, info in stats do
let info = info I> Map.tolList
let ttls, conts =
info I> Seq.filter (fun (k, _) -> k.Contains "
info I> Seq.filter (fun (k, _) -> not (k.Conta
cprint ConsoleColor.Cyan "[STATS] Slide: %s (%d
for k, v in info do
cprint ConsoleColor.DarkCyan

© No issues found

Error List Output

] Ready

templ.Replace("{{BODY}}", slidesHtml).Rr ~

Visual Studi nce Improvement Program

Help Improve the Visual Studio Family of Software

Join the Visual Studio Experience Improvement Program and help improve
the quality, reliability, and performance of Microsoft software and services.

Participation will not degrade the performance of your software.

If you choose to participate:
Microsoft will

- Collect information on how you use our software and services to
identify trends and usage patterns.

You can stop participating in this program at any time. Just go to the Help
menu, select the Privacy menu, select Privacy Settings, then select No, |
would not like to participate. Opting out will stop collection of optional
but not required data. Some data collection is required to keep Visual
Studio secure, up to date, and performing as expected.

Would you like to participate in the Visual Studio Experience Improvement
Program?

@ Yes, | am willing to participate (Recommended)

O No, I would not like to participate

Microsoft Privacy Statement

@ Select Repository ~

aApRIRU #4

Widely used to
understand use of
commercial systems

What language or
editor features are
Jsed, performance,
oroject profiles

Heuristics

Rules of thumb for
evaluating designs
written by experts

~valuation without direct
numan involvement!

-xample: Match between
systerm and the real world

Olsen's criteria for user
interface systems

Nielsen's usability heuristics

e Characteristics of a good interface
e General usability guidelines
e Consistency, visibility of state, ...

Cognitive dimensions of notation

e Heuristics for assessing notations
e Broad-brush understandable evaluation
e \/iscosity, visibility, abstraction, ...

nnnnnnnnnn

((((((((((

nnnnnnnnnnnnnnnnnnnnn

= Baseline or improves
over state of the art

((((((((((((((

Efficiency, lines of code

Not about usability, but
an easy thing to show

0

2 o
Es

S 5

o g s
3% =
g8 ==
&

© 3

N p——
5

2

o

SIGPLAN Empirical Evaluation Checklist

This checklistis meant to support informed judgement, not supplant it

Claims not explicit
Claims must be explicit in order for the reader to assess
preta el kel oo ik e
claims cannot possibly be Glims shoud aso
1o salo ot Just what 1 acieved bt

Claims not appropriately scoped

“The truth of a claim should clearly follow from the evidence
provided. Claims that are not fully supported mislead read-
ers. "Works for all Java is over-broad when based on a sub-
set of Java. Other examples are ‘works
‘when evaluating only with (unrealistic) simulation, and ‘au-
tomatic process' when requiring human intervention.

Fails 1o acknowledge limitations
A paper should acknowledge its limitations to place the
scope of s results in context. Stating no limitations at al, or
only tangential ones, while omitting the more relevant ones
may mislead the reader into drawing overly-strong conclu-
sions. This could hold back efforts to publish future im-
provements, and may lead researchers down wrong paths.

e
Empi idence for a claim that a techniquelsystem -
BT b G] e
ison against an appropriate baseline. The lack of a base-
line means empirical evidence lacks context. A 'straw man'
baseline that is misrepresented as state-of-the-art is also
problematic, as it would inflate apparent benefit.

Comparison i unfair

dev b

L

£ o
g =t

8 8 N

T 3 o
3

é's N ki
2

3§

O s

o &

= 13

s 2

= e

@

frished befrs you

H

[Er—

0

ETEY

e e Thsonc”

Principled Benchmark Choice
Example Violations

advantage of the proposed system. For example, it would
be unfair to compile the state-of-the-art baseline at -00 op-
timization level, while using -O3 for the proposed system.

Inappropriate suite
Evaluations should be conducted using appropriate estab-
lished benr)vmarks where they exist so that dalmed results

that are not suficently geneva\ Establshed suies shoud
bo used in context; ©.g. it would bo wrong to use a single-
fivoaiod 5l o Stucying porael poorance

Unjustified use of non-standard suite(s)
‘The use of standard benchmark suites improves the com-
parability of results. However, sometimes a non-standard
suite, such as one thal is subsetted or homegrown, is the
better choice. In that case, a rationale, and possible limita-
tions, must be provided to demonstrate why using a stan-
dard suite would have been worse.

Kemnes instead o tul spplcations
o e ol 2y s e e
ation, However, cam trat system benefts applcato
Ghoud betostsd on such appications ety and ot oy
on micro-kenels, which may lack important characteristics

\
il
tion:

Relevant Metric:

Example Violati

.

Appropriate and Clear Experimental Design

Example Violations

ZD

eergy cansumes”

s

dvs e st

for sarsar

e s
o -

193 220
e

Sodo
,.8,‘:-

Indirect or inappropr
Proxy metrics can subsitute for direct ones only when the.
substituion is clearly, expliitly justified. For example, it
‘would be misleading and incorrect to report a reduction in
cache misses 1o claim actual end-o-end performance or
energy consumption improverment.

Fails to measure all important Effects
All important effects should be measured to show the true.
cost of a system. For example, compiler optimizations may
speed up programs at the cost of drastically increasing

bo measured as well as the program speedup. Failure to
do so distorts the costbenefit of the system.

Insufficient information to repeat

Experimonts evaluaing an idea need 10 bo descrioed n
to be repeatable. All

default values) should be included, as oA

numbers of software, and full details of hardware platforms.

Inufficient information impedes repeatability and compari-

s0n of future ideas and can hinder scientifc progress.

Unreasonable platiorm

alution shoud bo on 3 platorn that can reaso
ably be said to match the claims; otherwise, the results
o o ovaluason wil not uly support o ciaims. For o
ample, a claim that relates to performance on mobile plat-
forms should not have an evaluation performed exclusively
on servers.

Ignores key design parameters
Key parameters should be explored over a range to evalu-

ngs.
the heap when evaluating garbage collection and the size
of caches when evaluating a locality optimization. Al ex-

cted system configurations (e.g., from warmup to steady
State) should be considered.

Gated workload generator
Load generators for typical transaction-oriented systems
should be ‘open l0op', 10 generate work independent o the
performance of the system under test. Otherwise, results

ly
are usually open-foop.

Tested on training set
When a system aims to be general but was developed with
close consideration ofspecfc exampes s essental that
tthe
system is evaluated on data distinct from the vammg set.

oS peYaTeiale snelfsislofi [l elexch i)

Misleading summary of results
The summary of the results must reflect the full range of
their character to avoid misleading the reader. For example,
it is not appropriate to summarize speedups of 4%, 6%,
7%, and 49% as 'up 10 49%. Instead, the ful istrbution of

of il applcations. “ resuits must bo reported.
arge s’ F] v vpto4lemes”
5
Insufficient number of trials 3 Inappropriately truncated axes
Modern systems with non-determiristc performance prop- 14 rovido a visual ntuition about a result. A truncated
. erlies may requite many trials (e.g., of a single time mea- 5 2 i graph (with an axis not including zero) will exaggerate the.
J e e e L D o8 1 e
ure to do o isks treating noise as sigral. Similarly, moro s g e of an axis can sometimes aid expositon, but should
o s may bo needed 1o got the system nto an infended s i ponted o0t oxpicty o voe b mslonig:
@ 2w stalo(og, noa sicady tale that voids warmup efecs). H 5 oo
25
i Inappropriate summary statistics 3 £ Ratios plotted incorrectly
s Subimay siatiics such as mean and medan can es- | B | A Incorety lted ratios bady misead visual ntuton. For
25 i . Buthey [K example, 2.0 and 0.5 are reciprocals, but their linear dis-
£ 3 carefully, because each statistic presents an accurate view o tance from 1.0 does ot reflec that, so ploting those num-
st ST ; borson a naer scel sgnifcanty it th rosut, Thi
28 . summary may ampify noise or hide an important rend. 5 SlonedAatute. misleading effectcan bo avoided either by using a log scale
s S S or ing o the lowest (highest) value.
3 8
g e — g e
S 105 A moasure of variabity (e.g. variance, std. doviation,
< s | quaniies) andlor confidence inlervals is needed to under- relevant information. Undr-precise reporls may hide such
e stand the distrbution of the data. Reporing just a measure informaion, and over-precise ones may overstate the accu-
0 of central tendency (e.g., a mean or median) can mislead racy of a measurement and obscure what i relevant. For
e reader, cspecially when the distribution is bimodal or . exampl, reporting '49.9% when the experimenal error is
soswcrds” has significant variance, 3365 srip " 1% overstates the level of precision of the resul
@
T POF:http:/1 " ; Octobor 2018. €. D. Berger, S. M. Blackburn, M. Hauswitth, and M. Hicks or the ACM SIGPLAN EC

Technical
performance

Getting it right

Claims, comparison
benchmarks, metrices,
setup, presentation

See SIGPLAN Empirical
Fvaluation Checklist

Conclusions
Jsability and evaluation

Evaluation Requirements

Performance evaluation .

User experiments and Cr € atlon
Case studies Interviews

Expert evaluation Corpus studies

Formalism and proof Natural Programming
Qualitative user studies Rapid Prototyping

Figure 1. A typical design process

Evaluating and comparing
with existing systems

Evaluating usability can
inspire new designs

The danger is designing
with focus just on
effective evaluabllity

Reactive programming

e [ntroduction to RxJS concepts

e Avallable at:
Nttps.//www.learnrxjs.io/learn-
rX|s/concepts/rxjs-primer

Why read this

e Widely used practical library!
e But what exactly is going on?
e Does it always behave ‘intuitively™

https://www.learnrxjs.io/learn-rxjs/concepts/rxjs-primer

Human-centric language design

e Evaluation methods from the HCI field
e Controlled experiments, empirical studies
e Demos, usage, heuristics & performance

Tomas Petricek, 309 (3rd floor)

™ petricek@d3s.mff.cuni.cz

© Nnttps//tomasp.net | @tomaspetricek

© nttps//d3s.mff.cuni.cz/teaching/nprg0/5

mailto:petricek@d3s.mff.cuni.cz
https://tomasp.net/
http://twitter.com/tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg075

References (1/2)

Methodology

e Greenberg, S. and Buxton, B. (2008) Usability Evaluation Considered
Harmful (Some of the Time), CH

e Ledoetal (2018). Evaluation Strategies for HCI Toolkit Research

e Olsen (2007). Evaluating User Interface Systems Research. UIST

o Arnold, K. (2005). Programmers are People, Too, ACM Queue

Heuristics

e Nielsen, J. (1994). 10 Usability Heuristics for User Interface Design.
Norman-Nielsen Group

o Blackwell, A, Green, T. (2002). Notational Systems — the Cognitive
Dimensions of Notations framework. (Chapter)

e Berger, E. etal (2022). SIGPLAN Empirical Evaluation Checklist. ACM
SIGPLAN

https://www.billbuxton.com/usabilityHarmful.pdf
https://stevenhouben.be/pubs/EvaluationCHI2018.pdf
http://byu.danrolsenjr.org/paperPDFs/EvaluatingSystems.pdf
https://queue.acm.org/detail.cfm?id=1071731
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.cl.cam.ac.uk/~afb21/publications/CarrollChapter.pdf
https://raw.githubusercontent.com/SIGPLAN/empirical-evaluation/master/checklist/checklist.pdf

Examples

o Steffik, A. et al. (2013). An Empirical Investigation into Programming
Language Syntax. ACM

e Ray, B.etal (2074) A Large Scale Study of Programming Languages
and Code Quality in Github, FSE

e Berger, E. et al. (2019) On the Impact of Programming Languages on
Code Quality, ACM

e Borowski, M. et al. (2022). Varv: Reprogrammable Interactive
Sofware as g Declarative Data Structure. CH|

o Petricek, T. (2022). The Gamma: Programmatic Data Exploration for
Non-programmers. VL/HCC

Books

e Norman, D. (1988). The Design of Everyday Things, Basic Books
e Hacking, I. (1983). Representing and Intervening, Cambridge

https://www.vidarholen.net/~vidar/An_Empirical_Investigation_into_Programming_Language_Syntax.pdf
https://web.cs.ucdavis.edu/~filkov/papers/lang_github.pdf
https://arxiv.org/pdf/1901.10220.pdf
http://vis.csail.mit.edu/pubs/varv.pdf
http://tomasp.net/academic/papers/iterative/iterative.pdf
https://www.basicbooks.com/titles/don-norman/the-design-of-everyday-things/9780465050659/
https://www.cambridge.org/en/academic/subjects/philosophy/philosophy-science/representing-and-intervening-introductory-topics-philosophy-natural-science

