Making programming
easlier and learnable

Tomas Petricek, 204 (2nd floor)
™ petricek@d3s.mff.cunicz
© nitps//tomasp.net | @tomaspetricek

Lectures: Tuesday 12:20, S6
© nittps/d3s.mff.cuni.cz/teaching/nprg07/5

mailto:petricek@d3s.mff.cuni.cz
https://tomasp.net/
http://twitter.com/tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg075

What do you think

e [would love to hear from you!
e tinyurl.com/nprg0/5-feedback

Some things to consider

e [Opics covered in the course?
e Conventional lecture format?
e Alternatives to assignment?

https://tinyurl.com/nprg075-feedback

Programming for non-programmers

Programming for non-programmers

P8 Augmenting human intellect research theme

@ Reducing costs of programming for businesses
@B Computer science & general education

& Thinking about how to think when programming!

Join the Movement to

Bring Computer Science
to ALL Students

Computational
thinking

s that teaching
everyone to code?

VWhat to teach and
now to best do 1t?

Designing languages
for education?

LOGO (1967)

Characteristics of the era

Not just a programming
language for kids

Computer environment:
people, things, ideas

Computer culture: a way of
thinking about thinking

-ChatBots Emails Mobile Apps
€chatamo chatfuel & - © rpirosot kinetise Biznessaprs [SJ &R (S AeeMachine BETI
FLOWXD — . Appspotr’ & aropsource ; FFoundry
opla.ai @ smooch 4 stripo. @rorewe vocefio | | APPOmboard Yobuildfire EZEEE AAWhppinsiiue
ETARS apperyio Q@secri EHA shoutem
Web
r Front End with eCommerce — [~ General Visual Site Builders — ~Wordpress Landing Pages - _portfolios -
ortfolios
W) e hesk || Divi. MLayoureress [[E]
4w @savareseace W\jX Layoutit! 1| | @oesvervuicer Thomify ™ © landen 1 dunked
eebl readymac o, Pagelines /& thrive e B Leadeey EXPOSURE
o2, ¢ volusion i Pobling " Qe ||
webnode P7TY webflow | | oooucroft popa
boun:
PrestaShop
~Front end from Cloud Spreadsheet — — Full Stack Web Builders - - Templates Forms
T— - Look mom no code MakerPad e " Z 5o o
s [l side. || bubble s EE L
- Cloud Spreadsheet Business Apps
iz shee | © 5etty 5ocs| DECISIONS] FlowForma BE R g @1 Creator
5 Airtable E - Appian ;}K'SS.FLOW (Q"™ 4, process.st @Q) QuIek Iy skuid ©)Ninox FAIN 4
ST [Pty @ pipefy
N Retool @) DronaHQ [FIEVEYEY EEEE PowerApps
servicenow.
-Scrapers Testin
— -
’. e @parseut PAPSETS (Escrapesiorn WebHarvy | I oy vy [testivi scriptworks
-Connectors

). actiondesk FLOWXO IFTTT =vcoot Fow [

APIANT

**
imPARABOL zapier

No-code and
low-code

Platforms for creating
applications with
minimal code

A new take on end-
user programming

UNIQUE SAVINGS
of the

FLOW-MATIC

FLOW-MATIC

High-level business
oriented predecessor
of COBOL (1957)

Makes coding so easy
your company will not
need programmers!

Programming for non-programmers

R Metaphors for explaining programming

40 Cognitive models to understand human thinking
2 Finding more manageable kinds of interactions

@ Understanding & assisting with cormmon errors

End-user programming
Making programming super easy

A small matter of programming

End-user programming (1993)

e Spreadsheets, CAD systems,
statistical packages
e Task specific systems

An elusive dream?

e Can anyone become a programmer?
e Beyond task-specific?
e Programmable end-user systems”?

A ML NIATTER
OF PROGRAMMING

BONNIE A. NARDI

@ Very high-level
Domain-specific languages

(@ Spreadsheets
CAD & statistical systems

Interactive
construction

— @ User interaction

New kinds of specifying

High-level
languages

FLOW-MATIC (1960s)
=nglish; easily taught to
clerical workers

DSLs (2000s)
Small languages for
specific problems

Low-code (2020s)
GUI-based entire
app development

Mastering a knowledge of the
complicated techniques and
symbols of conventional com-
puter flow charts requires a
long training period. Flow-Matic
charting, however, can be eas-
ily grasped by anyone with a
knowledge of the application to
FLOW-MATIC CODE be programmed.

ORY FILE-A PRICE FILE~B; OUTPUT PRICED=INV FILE~C UNPRICED~INY

T-NO(A) WiTH PRODUCT-NO (B} IF GREATER CO TO OPERATION. 10,
ZRATION 5; OTHERWISE GO TO OPERATION 2.

Domain-specific
abstractions for
server-less backends

e HT TP nandler
o \\NOrker

e Database
e CRON job

Limits of high-level notations

87 Requires a "tidy" problem domain

Bz [here is no universal language

H Adaptable notations tend to be complex

& Cannot (should not?) accept human vagueness

Cognitive obstacles

e Loss of direct manipulation
(and the frame problem)

e Use of (specialized) notation

e Abstraction for complexity

Attention investment model
e Cognitive obstacles have cost

e Programming as an investment
e \When is the gain worth it?

BB Spreadsheet-based interfaces

Avoid abstraction and give immediate feedback
£ Programming by example
O need for notation and abstraction

I Direct manipulation
\anipulate concrete entities & post-noc abstraction

Are they really programming?

e Domain-specific, but powerful
e Turing-complete (in a way)
e L ambdas, macros, extensions

Spreadsheets & programming
e |[DES can learn about liveness

@H9-C-1= | TuingMachine Successoralsx - Microsoft Bl [=[& [
e G o B Y VP
= ¥ -
2 &- E 25 i
raste Sont. Fing
- =4 7 Filter - Sele
Cipboara Font pignment Numbe Soies cans eating
5

e Spreadsheets can learn about software engineering
e TechDims: Abstraction construction, feedback loops

1020

General-purpose

spreadsheets?
(Marasoiu, 2019)

Spreadsheet-based
data visualization

Spreadsheet interface
for constructing
custom charts

What else could we
express this way?

Direct manipulation

Complete task manually,
have computer repeat it

Industrial robots, graphics
editing, task automation,
geometry, formatting

How to allow for small
variation in behaviour”

Transform Script Import Export

» Split data repeatedly on newline into
rows

P Split split repeatedly on ')

> Promote row O to header

" Delete empty rows

" Extract from Year after 'in '
" Set extract's name to State

™ Fill State by copying values from above

I Text Columns Rows Table

Delete rows where Year starts with
'Reported’

Delete rows where Year contains
'Reported’

Extract from Year between positions 0, 8

Clear

0 |Reported
1 2004
22005
3 2006
42007
52008
6 Reported
7 2004
8 2005
92006
10 2007
11 2008
12 Reported
13 2004
14 2005
15 2006
16 2007
17 2008

Reported

& Arkansas

19 2004

Year

crime in

crime in

crime in

crime in

Alabama [Alabama
Alabama
Alabama
Alabama
Alabama
Alabama

Alaska |Alaska
Alaska
Alaska
Alaska
Alaska
Alaska

ArizonaArizona
Arizona
Arizona
Arizona
Arizona

Arizona
Arkansas

Arkansas

State

4029.
3900
3937
3974.
4081.

3370.
3615
3582
3373.
2928.

5073.
4827

4741.
4502.
4087.

4033.

Property]

w ©

Kandel et al, 2071

Data wrangling by
direct manipulation

Jser cleans with data
System builds a script

Attempts to generalize
concrete interactions

Programming by example

FlashFill and FlashExtract
o Write (or select) examples

e System infers patterns

e Refine examples to clarify

,""ug/L"™",0.350,0.489,2428667.736"

""ug/L"",0.004,3.315,3606.816"

| "ug/L™,3.088,2.387 4648771.382

Implementation

' ,'“'g/L“",0.026,0.702,228830.402"

e Synthesize programs to match
e Using carefully chosen small language
e And a suitable search algorithm

Teaching programming & thinking

Minsky & Papert

‘Seymour Papert and Marvin
Minsky thought about thinking,
about children's thinking anc
about machine's thinking.

LOGO project & language

e Computers as 'native speakers’ of mathematics

e [each creative and logical thinking
e Giving children tools to learn (Montessori)

Language features

e [Nnteractive and LISP-inspirec
e Lists, recursion, functional
e More of an idea than a language

RIGHT 368~

. OGO for education

e | earning through microworlds
e Give kids the most powerful language created
e Powerful ideas: anthropomorphization, metalanguage

TO NOUN

OUTPUT PICK [BIRDS DOGS ..]
END
TO VERB

OUTPUT PICK [HATE BITE LOVE]
END
TO ADJECTIVE

OUTPUT PICK [RED PECULIAR .

END

PRINT (SENTENCE ADJECTIVE
NOUN VERB ADJECTIVE NOUN)

.]

A small domain-
specific language for
exploring ideas

Turtle graphics is best
KNnown example

First LOGO example
was for word plays

Turtle microworld

On-screen and floor robots
Great for teaching

Debug by pretending to be
the turtle & follow program

Does not blame students
("the turtle has a bug")

Teaching programming thinking today

A& From 1960s idealism to 2020s pragmatism
& Focus on what we can convincingly study
W Improving teaching practices & methods
& Decveloping better conceptual frameworks

Notional machines

Models for thinking

e Model of a computer operation
e Helps understand computation
o A'useful lie" for teaching

Example notional machines

e Objects and message passing of Smalltalk
e OGO 'little people’” metaphor
e Computation as railway track

PRINT man

ITEM 2 [AB C]

—
—
B
The PRINT man sces
that his input is
—

ITEM 2 [ABC]

So he calls up a friend
and gives him the
procedure ITEM and
the appropriate inputs.
He says: Get the job
done; don’t bother me
until you are through.

[Later]
The reply to my request €——
is B. Now I can PRINT it.

ITEM man
ITEM 1 [B C]
—
(—
B
The ITEM man says:
:NUM is 2. If it were 1,
—_— >

I'd reply FIRST of
[ABC], or A. Butitis
not 1, so I see I have to
call up another guy to get
ITEM 1 [B C]

[Later]

The reply to my request

is B. My instructions say

I must OUTPUT the
answer. That means | must
pass it back.

another

ITEM man

This guy has it
casy. He replies
B, since the
progral‘n Says

OUTPUT FIRST

BC

A powerful idea for
understanding how
programs work

—unction instantiation
as a little men” doing
one step of) work

Boxes with pointers as
connecting arrows

Let's insert 3 1In the list
petween 2 and 4.

|3

Boxes with pointers as
connecting arrows

Let's insert 3 1In the list
petween 2 and 4.

Useful but does not
explain everything that
pointers can do!

Basic disagreements about the problem

5> Computational thinking & algorithms for all?
a3 Creativity as with LOGO and Sonic Pi?

@ History and philosophical problems?

led How to best teach present-day technology?

Metaphors
Thinking about programming

Essence of human thought?

e [ImMe asresource, Up as positive, ...
e Apparent through our language W‘*‘#ERE
e Rasic for constructing mathematics? A%
e Fach has fits and misfits

Metaphors for programming

HOW THE EMBODIED MIND BRINGS MATHEMATICS INTO BEING

o Notional machines (LISPE Smalltalk) ettt
e [hinking about variables, monads

Two metaphors for variables

Variable as a box 4
e YOou store value in a box |

e \/ariable ‘contains’ a value .

e \\/Nat is stored in @ name”

Variable as a label

e | abel you place on a value
e \ariable 'Is" a value
e What is a name”

Does the metaphor for variables matter?

« What is the meaning of multiple assignment?
® Boxcan contain multiple values!

© L abel will be for computation or addition

W Box metaphor wins, but beware of misfits

class Monad m where
(>>=)
ma —-> (a —-> m b)
return ::
a —-> m a

-> m Db

Interface capturing a class
of computations

Jsed for effectful
computations in Haskell

How programmers
think about them?

Symbolic Box Track

Meaningless Container that can Computation that
symbolical entity be transformead can proceed in
satistying laws and un-nested multiple ways
T fia—=b g:b——
T3 —= T?
uTl i“ a%@ \\ \.
72 T [a][a]|—[ad] f:ag*:b<>c

Common errors in thinking

Q Loops terminate when condition turns false
= Sequential statements do not wait
Bz \ariable name has effect on its behaviour

€ Missing else branch stops program

Conclusions
Fasier and learnable

Please do keep in touch!

e Do a final project (and get credit as a bonus)
e Sign-up for a follow-up seminar
e Getintouch about MSc or PhD projects

Tomas Petricek, 204 (2nd floor)

™ petricek@d3s.mff.cuni.cz

© nitps//tomasp.net | @tomaspetricek

© nittps/d3s.mff.cuni.cz/teaching/nprg07/5

mailto:petricek@d3s.mff.cuni.cz
https://tomasp.net/
http://twitter.com/tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg075

References (1/3)

End-user programming

o UNIVAC FLOW-MATIC (1957). Introducing a new language for
automatic prograrmming. Sperry Rand Corporation

e Bonnie A Nardi (1993). A Small Matter of Prograrmming. MIT

o Blackwell, A F. (2002). First Steps in Prograrmming: A Rationale for
Attention Investment Models. VL/HCC

e Blackwell, AF, Burnett, M. (2002). Applying Attention Investment to
End-User Programming. VL/HCC

Spreadsheets

e Marasoiu, M. et al. (2019). Cuscus: An End User Programming Tool
for Data Visualisation. IS-EUD

http://s3data.computerhistory.org/brochures/univac.flowmatic.1957.102646140.pdf
http://s3data.computerhistory.org/brochures/univac.flowmatic.1957.102646140.pdf
https://mitpress.mit.edu/9780262140539/a-small-matter-of-programming/
https://www.cl.cam.ac.uk/~afb21/publications/HCC02a.pdf
https://www.cl.cam.ac.uk/~afb21/publications/HCC02a.pdf
https://ieeexplore.ieee.org/document/1046337
https://ieeexplore.ieee.org/document/1046337
https://link.springer.com/chapter/10.1007/978-3-030-24781-2_8
https://link.springer.com/chapter/10.1007/978-3-030-24781-2_8

References (2/3)

Programming by demonstration

e Smith, D. C. (1977). Pygmalion: A Computer program to Model and
Stimulate Creative Thougnt. ISR

e Kandel, S, et al. (2011). Wrangler: Interactive Visual Specification of
Data Transformation Scripts. CHI

e Cypher A (ed.) (1993). Watch What | Do: Programming by
Demonstration. MIT

Programming by example

e Gulwani, S.etal (2016). Programming by Examples. DSSE
e VU Le Gulwani S. (2014). FlashExtract: A Framework for Data
Extraction by Examples. PLDI

https://link.springer.com/book/10.1007/978-3-0348-5744-4
https://link.springer.com/book/10.1007/978-3-0348-5744-4
http://vis.stanford.edu/files/2011-Wrangler-CHI.pdf
http://vis.stanford.edu/files/2011-Wrangler-CHI.pdf
https://mitpress.mit.edu/9780262527965/watch-what-i-do/
https://mitpress.mit.edu/9780262527965/watch-what-i-do/
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/12/pbe16.pdf
http://www-cs-students.stanford.edu/~adityagp/courses/cs598/papers/flash-extract.pdf
http://www-cs-students.stanford.edu/~adityagp/courses/cs598/papers/flash-extract.pdf

References (3/3)

Programming education

e Solomon, C. et al. (2020). History of LOGO. HOPL

e Papert S. (1980). Mindstorms: Childern, Computers and Powerful
/deas. Basic Books

e Fincher, S. A. & Robins A. V. (eds.) (2019). The Cambridge Handbook
of Computing Education Research. Cambridge

Metaphors & misconceptions

e Lakoff, G. & Nunez, R. (2007). Where Mathematics Come From

o Petricek, T. (2018). What we talk about when we talk about monads

e Hermans, F et al. (2018). Thinking out of the box: comparing
metaphors for variables in programming education. WiPSCE

o Swidan, A. et al. (2018). Programming Misconceptions for School
Students. ICER

https://ora.ox.ac.uk/objects/uuid:2f350f11-e986-4a08-a5dc-9cf6d5a9d1d4
http://worrydream.com/refs/Papert%20-%20Mindstorms%201st%20ed.pdf
http://worrydream.com/refs/Papert%20-%20Mindstorms%201st%20ed.pdf
https://www.cambridge.org/core/books/cambridge-handbook-of-computing-education-research/F8CFAF7B81A8F6BF5C663412BA0A943D
https://www.cambridge.org/core/books/cambridge-handbook-of-computing-education-research/F8CFAF7B81A8F6BF5C663412BA0A943D
https://www.basicbooks.com/titles/george-lakoff/where-mathematics-come-from/9780465037711/
http://tomasp.net/academic/papers/monads/monads-programming.pdf
https://pure.tudelft.nl/ws/portalfiles/portal/47760609/box_label_vars.pdf
https://pure.tudelft.nl/ws/portalfiles/portal/47760609/box_label_vars.pdf
https://dl.acm.org/doi/10.1145/3230977.3230995
https://dl.acm.org/doi/10.1145/3230977.3230995

