
NPRG075
Learning from architecture and design

Tomáš Petříček, 204 (2nd �oor)
✉
 |

Lectures: Tuesday 12:20, S6

petricek@d3s.mff.cuni.cz
https://tomasp.net @tomaspetricek

https://d3s.mff.cuni.cz/teaching/nprg075

mailto:petricek@d3s.mff.cuni.cz
https://tomasp.net/
http://twitter.com/tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg075

Design and architecture
Solving complex problems

Architecture and
urban planning
Understanding and
solving complex
problems

Organizing large
number of diverse
entities

Useful concepts and
methodologies?

Software architecture
How to organize systems?

How can we study what
organization makes sense?

How languages and tools
shape organization?

How systems grow as
requirements change?

 Jacobs on cities

Problems of simplicity
Fully analyzable

Unorganized complexity
Statistically analyzable

Organized complexity
Non-reducible

Urban planning
 Parnas on software

Analogy systems
Continuous models

Repetitive digital
Reduce via abstraction

Non-repetitive digital
Non-reducible

Design problems
Design problems are ill-de�ned

Full information never available
Cannot be exhaustively analyzed
No correct solution may exist

Solving design problems
Conjectured solution reframes the problem
Designers impose "primary generator"
Change problem-as-given in light of solution

Design patterns
Learning from architecture

Vernacular

Adaptation over
generations

Achieving fit
Modernist

Problem analysis
and fresh design

Post-modern

Prefers cleverness,
humour over �t!

Design patterns
Based on Christopher
Alexander's work on
architecture

Useful but criticized

Missing the point of
Alexander's work

Workarounds for coding
in a poor language

Quality without name
A system has it when
it is true to its inner
forces, when it is free
from contradictions

Each "living" pattern
resolves a system of
forces. When all forces
are resolved, the quality
appears.

Why is it hard?
Vernacular method

Shared language lost from community
Complexity of problems has grown
Community cannot build a skyscraper

Modernist method
Cannot perfectly analyze problem
Always misses some important detail
Keeps reinventing imperfect forms

Quality
How is this about programming?

⌨ Think about programmer thinking and coding
 Programming systems, not languages
 Need to resolve complex systems of forces
 Patterns to capture approaches that work

Achieving fit
Design pattern

Context, problem, forces, solution
Resolves interconnected forces
Works as a solution template

Pattern language
Ordered sequence of patterns
Can be followed step-by-step
Ideally shared and agreed on

Degrees of publicness
Context: Where people
want to live is different

Forces: Some want to live
where the action is, some
in more isolation

Problem: How to organize
a cluster of homes?

Solution: Distinguish
private homes, public
homes and in-between

Notebook systems
Designing a complex system

Notebook systems
Literate programming
environment - code,
outputs, comments

Used for exploration,
scienti�c tasks, data
science, learning

How to design
exploration
environment?

Demo
Using Python in a notebook system

Case study: Notebooks
Notebooks for data science

Use by FT journalists for article
Start with "Eurostat exports data"
tinyurl.com/nprg075-ft

Design questions
What are the speci�c forces?
How are they re�ected in the notebooks?
Which are poorly resolved?

https://github.com/ft-interactive/recycling-is-broken-notebooks

Pattern languages
Designing exploration tools

Exploratory
programming
workspaces

Environment that lets
you �gure something
out interactively..

Data science, but also
general programming

Are there common
patterns of working?

Taeumel et al. (2022)
A Pattern Language of an Explora-
tory Programming Workspace

Patterns in exploratory tools
Smalltalk, notebooks, UNIX
System design and ways of using

Conversation in context
Seven patterns covering three aspects
Questions, context, responses
Capture needs, forces, structure, trade-offs, etc.

Programmer,
environment,
interaction context

"It is all about you
working on a project in
an environment while
continually switching
between different
interaction contexts"

Conversation in context
Forces resolved by the pattern

 Want to ask question about something
 Finding the right place to ask
 Finding the right words to use
⚛ Understanding complex technical answer

Conversation
in context
Solution structure

Iterative question and
answer interaction with
persistent context

Support for revising
questions asking
follow-up questions

Further patterns
Elaborate inquiry

Di�cult to ask complex questions
Use stepwise composition
Refer to previous answers

Proxy transport
Need to access external information
May be big or use an odd format
Embed into local context with lazy loading

Further patterns
Context, forces, solution

 Coach your environment by adding information
 Concepts in shards need to be linked
 Simple response to be found iteratively
 Pause and explore to better understand

Pattern languages
Designing pattern languages

Where patterns
come from?
Pattern languages
for creating
pattern languages

No single systematic
method that would
always work

Pattern writing
Where patterns come from

 Shared and evolved in a community
 Repeated solutions in past software systems
 Personal experience with a problem
☁ Focused group collaboration (origins of wiki!)

A pattern language
for pattern writing
(Meszaros+Doble, '97)

How to structure, write
and present patterns &
pattern languages

A pattern language
for creating
pattern languages
(Iba+Isaku, 2016)

Hints on
pattern mining

Collect experiences
Map and �nd overlaps
Structure in clusters

Practical tips
How to write a pattern language

 Patterns are about resolving forces
 Patterns should have �xed format
 Context, forces, structure, related patterns
 System structure or human interaction with it

Concepts and methods
Learning from architecture

Learning from
unaverage clues
(Jacobs, 1961)

Cannot reduce city
to a single statistic

Look for informative
singleton clues!

Demo
Commodore 64 BASIC

10 PRINT CHR$(205.5+RND(1)); : GOTO 10

Technical aspects
Edit & run in one terminal
Line numbers for navigation
Simple with POKE for hackers

Social aspects
Path from a user to a programmer
Commodore 64 boots into BASIC!
Learn by copying from magazines

What works
despite the theory
(Jacobs, 1961)

Elegant theories
that are convincing
but do not work

Document what
actually works
in practice instead!

Information hiding
Good software engineering

Divide systems into modules
Hide implementation details
Expose only what is needed

Why should this work?
Basic principle of OOP!
Can freely change internals
Modules developed independently

Information hiding
Brief history

Decomposing systems (1972)
IBM OS/360 development (1975)
Brooks' re�ections (1995)
Cathedral and the bazaar (1999)

Critique and alternatives
Design is hard to anticipate
Cumbersome & ine�cient uses
MIDI SysEx and UNIX DWARF work!

Conceptual coherence
(Brooks, 1975)

A clean, elegant
programming product
must present to each of its
users a coherent mental
model of the application.

Conceptual integrity
is the most important
factor in ease of use.

Post-modern programming
No grand narrative
I set out to deconstruct all the computer
languages and recombine them. I lovingly
reused features from many languages.

Why this works
Worse is better
Postmodernists prefer AND, modernists OR
Possible to write messy & clean programs

Worse is better
The right thing

Common LISP, ITS system
No incorrectness / inconsistency
Completeness, then simplicity

Worse is better
UNIX and C language
Simple is better than correct,
consistent & complete

Concepts and methods
Unexplored inspirations

Image of a city
How do we navigate
around cities?

And codebases?

Districts, landmarks
and pathways

Good design supports
navigability and legibility

Materials
Building materials
that look bad before
they go bad

Software tends to
break abruptly without
any warning...

Is there an alternative?

Vernacular
architecture
Achieves a good �t
without the continuous
reinvention of forms

Can we build software
without reinventing
forms? Spreadsheets?
Con�guration?

Conclusions
Learning from architecture

Architecture and
design in context
Conceptual design rather
than empirical science

Powerful methodologies
for idea generation

Appropriateness is harder
to evaluate - wait and see!

Reading
No information hiding?

Varv: Reprogrammable Interactive
Sofware as a Declarative Data Structure
Available at:
http://vis.csail.mit.edu/pubs/varv.pdf

What to read and how
Declarative, extensible programming!
Get a sense of how it works (Section 2)
Look at evaluation (Section 5)

http://vis.csail.mit.edu/pubs/varv.pdf

Conclusions
Learning from architecture and design

Methods & concepts for complex systems
Architecture, urban planning and design
Design patterns & pattern languages

Tomáš Petříček, 204 (2nd �oor)
✉
 |

petricek@d3s.mff.cuni.cz
https://tomasp.net @tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg075

mailto:petricek@d3s.mff.cuni.cz
https://tomasp.net/
http://twitter.com/tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg075

References (1/3)
Recommended

Parnas, D. L. (1985). .
Communications of the ACM, 28(12), 1326-1335.
Singer, J. (2020).

 In Onward!
Taeumel, M. et al. (2022).

. Design Thinking Research
Gabriel, R. (1991).

Just for fun...

Symbolics inc. (1983).
. IEEE

Software aspects of strategic defense systems

Notes on notebooks: Is Jupyter the bringer of
jollity?

A Pattern Language of an Exploratory
Programming Workspace

Lisp: Good News, Bad News, How to Win Big

Introducing the sophisticated professional
workstation

https://dl.acm.org/doi/10.1145/214956.214961
http://www.dcs.gla.ac.uk/~jsinger/notebooks.pdf
http://www.dcs.gla.ac.uk/~jsinger/notebooks.pdf
http://www.hpi.uni-potsdam.de/hirschfeld/publications/media/TaeumelLinckeReinHirschfeld_2022_APatternLanguageOfAnExploratoryProgrammingWorkspace_AuthorsVersion.pdf
http://www.hpi.uni-potsdam.de/hirschfeld/publications/media/TaeumelLinckeReinHirschfeld_2022_APatternLanguageOfAnExploratoryProgrammingWorkspace_AuthorsVersion.pdf
https://www.dreamsongs.com/WIB.html
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4037519
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4037519

Design patterns

Meszaros, G., & Doble, J. (1998).
. Pattern languages of program design, 3

Iba, T., & Isaku, T. (2016).
.

PLoP 2016
Sasabe, A. et al. (2016).

. Conference on Pattern Languages of Programs

Software classics

Brooks Jr, F. P. (1975). . Addison-Wesley
Raymond, E. S. (1999). . O'Reilly
Gamma, E. et al. (1994).

. Addison-Wesley.

A pattern language for pattern
writing

A pattern language for creating pattern
languages: 364 patterns for pattern mining, writing, and symbolizing

Pattern mining patterns: a search for the
seeds of patterns

The mythical man-month
The cathedral and the bazaar

Design Patterns: Elements of Reusable
Object-Oriented Software

http://xunitpatterns.com/~gerard/plopd3-pattern-writing-patterns-paper.pdf
http://xunitpatterns.com/~gerard/plopd3-pattern-writing-patterns-paper.pdf
https://dl.acm.org/doi/abs/10.5555/3158161.3158175
https://dl.acm.org/doi/abs/10.5555/3158161.3158175
https://hillside.net/plop/2016/papers/proceedings/papers/sasabe.pdf
https://hillside.net/plop/2016/papers/proceedings/papers/sasabe.pdf
https://www.oreilly.com/library/view/mythical-man-month-the/0201835959/
http://www.catb.org/~esr/writings/cathedral-bazaar/
https://www.oreilly.com/library/view/design-patterns-elements/0201633612/
https://www.oreilly.com/library/view/design-patterns-elements/0201633612/

Architecture books

Jacobs, J. (1961). .
Random House.
Alexander, C. (1964). . Harvard.
Alexander, C. et al. (1977). . Oxford.
Alexander, C. (1979). . Oxford.
Lynch, K. (1964). . MIT press.

Programming design

Wall, L. (1999). . Online
Noble, J., & Biddle, R. (2004).

. ACM SIGPLAN Notices, 39(12)
Petricek, T. (2022). . Online.
Clark, C., & Basman, A. (2017).

. Salon des Refusés

The Death and Life of Great American Cities

Notes on the Synthesis of Form
A Pattern Language

The Timeless Way of Building
The image of the city

Perl, the �rst postmodern computer language
Notes on notes on postmodern

programming
The Timeless Way of Programming

Tracing a paradigm for
externalization: Avatars and the GPII Nexus

http://www.randomhousebooks.com/books/86058/
https://www.hup.harvard.edu/catalog.php?isbn=9780674627512
https://global.oup.com/academic/product/a-pattern-language-9780195019193?cc=cz&lang=en&
https://global.oup.com/academic/product/the-timeless-way-of-building-9780195024029?lang=en&cc=cz
http://mitpress.mit.edu/9780262620017/
https://www.perl.com/pub/1999/03/pm.html/
https://homepages.ecs.vuw.ac.nz/~kjx/papers/nopp.pdf
https://homepages.ecs.vuw.ac.nz/~kjx/papers/nopp.pdf
http://tomasp.net/blog/2022/timeless-way/
https://refuses.github.io/preprints/avatars.pdf
https://refuses.github.io/preprints/avatars.pdf

