Learning from architecture and design

Tomas Petricek, 204 (2nd floor)
™ petricek@d3s.mff.cunicz
© nitps//tomasp.net | @tomaspetricek

Lectures: Tuesday 12:20, S6
© nittps/d3s.mff.cuni.cz/teaching/nprg07/5

mailto:petricek@d3s.mff.cuni.cz
https://tomasp.net/
http://twitter.com/tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg075

Design and architecture
Solving complex problems

Architecture and
urban planning

Understanding and
solving complex
problems

SedlL}

sl

iy

large
number of diverse
entities

Useful concepts and
methodologies?

How to organize systems?

How can we study what
organization makes sense?

How languages and tools

shape organization?

HOwW systems grow as
requirements change?

#8y Jacobs on cities

Problems of simplicity
~ully analyzable

Unorganized complexity
Statistically analyzable

Organized complexity
Non-reducible

4 Parnas on software

Analogy systems
Continuous models

Repetitive digital
Reduce via abstraction

Non-repetitive digital
Non-reducible

Design problems

Design problems are ill-defined
e FUll InNformation never available

e Cannot be exhaustively analyzed Designerly Ways

of Knowing

e NO correct solution may exist

Solving design problems

e Conjectured solution reframes the problem
e Designers impose ‘primary generator’
e Change problem-as-given in light of solution

Design patterns
Learning from architecture

Achieving fit
Vernacular Modernist Post-modern

Adaptation over Problem analysis Prefers cleverness,
generations and fresh design humour over fit!

=
 —
sy
—
—
=
‘—,—
i
)
s
s
==
e

Design patterns

>

Based on Christopher
Alexander's work on
architecture

Desion Patterns

Elements of Reusable
Object-Oriented Software

Erich Gamma
Richard Helm
Ralph Johnson
John Vlissides

Useful but criticized

Missing the point of
Alexanders work

Workarounds for coding
N a poor language

>
)
O
wn
@)
-
=
m
w
| =
m
<
e
)
©)
Nl
m
(9]
0
©
7
>
(oo
()
©)
=
=
=
=
Z
(@)
wn
m
)
m
w

Quality without name

A system has it when
It IS true to its inner
forces, when it is free
from contradictions

Each 'living pattern
resolves a system of
forces. When all forces
are resolved, the quality
appears.

Vernacular method

e Shared language lost from community
e Complexity of problems has grown
e Community cannot build a skyscraper

Modernist method

e Cannot perfectly analyze problem
e Always misses some important detai
o Keeps reinventing imperfect forms

The
Timeless Way of
Building

Christopher Alexander

How Is this about programming?

B3 [hink about programmer thinking and coding
Programming systems, not languages

k Need to resolve complex systems of forces
= Patterns to capture approaches that work

°/¢ W

Achieving fit

Design pattern
o Context, problem, forces, solution
e Resolves interconnected forces

e \Works as a solution template

rr\\m. =

Pattern language
e Ordered sequence of patterns
e Can be followed step-by-step
e |deally shared and agreed on

Context: Where people
want to live is different

Forces: Some want to live
where the action Is, some
N More isolation

Problem: How to organize
a cluster of homes?

Solution: Distinguish
orivate homes, public
homes and In-between

Notebook systems
Designing a complex system

File Edit View Run Kernel Settings Help
B+ X OO » m C » Makdwn v

An example: visualizing data in the notebook the rate p rOg ra m m I n g

Below is an example of a code cell. We'll visualize some simple data using two popular packages in

Python. We'll use NumPy to create some random data, and Matplotlib to visualize it. e n V i r n m e n _t C d e
: :)

Note how the code and the results of running the code are bundled together.

L aor outputs, comments

Generate 100 random data points along 3 dimensions
X, Y, scale = np.random.randn(3, 100)
fig, ax = plt.subplots()

Map each onto a scatterplot we'll create with Matplotlib U S e d fo r- ex p | O rat | O n
)

ax.scatter(x=x, y=y, c=scale, s=np.abs(scale)*500)
ax.set(title="Some random data, created with JupyterLab!™)

scientific tasks, data

Some random data,;eated with JupyterLab! S C | e n C e} ’ ea rm | n g
L . B0
®

How to design
exploration
environment?

-2 4

Using Python in a notebook system

Notebooks for data science

e Use by FT journalists for article
e Start with "Eurostat exports data’
e tinyurl.com/nprg0/5-ft

Design questions

e \What are the specific forces?
e How are they reflected in the notebooks?
e \Which are poorly resolved?

https://github.com/ft-interactive/recycling-is-broken-notebooks

Pattern languages
Designing exploration tools

) File Edit Selection View Go Run Terminal Help ® Untitled-1.ipynb - Visual Stu Ce [m] X
Untitled-1.ijpynb ® @& m -
+ Code + Markdown Run All = Clear Outputs of All Cells | i= Outline -+ BL NET Interactive

Dr D B W
let titanic = Frame.ReadCsv() .GroupRowsBy<int>(
let byClass =
titanic.GetColumn<bool>()
|> Series.applyLevel fst (fun s -> series (Seq.countBy id s.Values))
| > Frame.ofRows Frame.sortRowsByKey
|> Frame.indexColsWith [;

byClass?Total <- byClass?Died + byClass?Survived
frame [=> round (byClass?Died byClass?Total 100
=> round (byClass?Survived byClass?Total

F# (NET Interactive)
A frame: 3 x 2
Died (%) Survived (%)
System.Double System.Double
37 63
53} 47
76 24

& Jupyter Server: Local Ln4, Col 71 CRLF _ Cell3 of 3
[@] MINGW64:/c/Users/tomas

$ curl https://en.wikipedia.org/wiki/Unix | cut -c1-110 | head

% Total Received % Xferd Average Speed Time Time Time Current

Dload Upload Total Spent Left Speed

100 250k 100 250k) 0 1378k U ==i==f== ==i==i== =s=fesfes LERE
<!DOCTYPE html>
<html class="client-nojs" lang="en" dir="1tr">
<head>
<meta charset="UTF-8"/>
<title>Unix - Wikipedia</title>
<script>document.documentElement . classNam client ;RLCONF={"wgBreakFrames": false, "wgSeparatorTransformTabl
"All articles needing additional references","All articles with specifically marked weasel-worded phrases","Ar
"pageLanguageCode": "en", "pageLanguageDir":"1tr", "pageVariantFallbacks":"en"}, "wgMFDisplayWikibaseDescriptions"
"ext.visualEditor.desktopArticleTarget.noscript”:"ready","ext.wikimediaBadges":"ready","ext.uls.interlanguage"
<script>(RLQ=window.RLQI I []).push(function(){mw.loader.implement("user.options@12s5i", function($,jQuery,requir

$ cur'Lrhttp /en.wikipedia.org/wiki/Unix | grep -o -P 'href="/wiki/.*?"' | head
% Total Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed

100 250k 100 250k 0 1664k W ==t
iki/File:UNIX_logo.sv:
href="/wiki/File:Simh-pdp1l1l-unix-sysiii.png"
href="/wiki/Unix_System_III"
ref="/wiki/PDP-11"
rogrammer"

== =8 1677k

dotnetexe bashexe bashexe bash.exe

Environment that lets
vou figure something
out interactively..

Data science, but also
general programming

Are there common
patterns of working?

Taeumel et al. (2022)

A Pattern Language of an Explora-
tory Programming Workspace
e Patterns in exploratory tools

e Smalltalk, notebooks, UNIX
e System design and ways of using

Conversation In context

e Seven patterns covering three gspects
e (Questions, context, responses
e Capture needs, forces, structure, trade-offs, etc.

Dedicated screen space

Questions
.

\ ’Respow\s.es

1

\ Ask WMe Something |

DateAndTime new.
DateAndTime now.

DateAndTime +oday. "2021-10-22T00:00:00+02.:00"
today = DateAndTime today.

today dayOfweek. "¢"
today daqOFWeekNavne.\ "#Friday"

"1(401-o1-o1Too:oo:oo+éo:oo"
"2.0214-10-2.2T16:25:2.2+02.:00"

&

|
Questions with reference
+o prior response

tis all about you
Working on a project in
an environment while
continually switching
between different
interaction contexts’

Forces resolved by the pattern

©®@ \\antto ask guestion about something

L
AE
o

-inding the right place to ask
-inding the right words to use

Understanding complex technical answer

istory of prior creen space to type, istory of prior
History of pri S to ty History of pri
questions draw, drop something responses
esti £ T Re
- ?_f‘__i :gvi_l _ Referevce prior | \ _1_2_5_30? sl
: \ response(s)| (. T 7
Question 2 ,I' @ ponse(s) ' Response 2 ':
TTTTTTTTTT N Revise prior T
fmmm s question(s) @ (mmmmmmmmm
Question n ' Response w
9 Pose vext / \ WMake gesture e
question < Repeat _-- when fivished

Establish dialog

Solution structure

'terative question ana
answer interaction with
persistent context

Support for revising
questions asking
follow-up guestions

E | a b O rate | n q U | ry _— Complex Expressions

e Difficult to ask complex questions <52> ==

e Use stepwise composition < 3

o Refer to previous answers SZ\ gl I
<<

“~—~Wodular Covstructs

Proxy transport

e Need 10 access external information
e May be big or use an odd format
e Embed into local context with lazy loading

Context forces solution

@ Coach your environment by adding information
' Concepts in shards need to be linked

Simple response to be found iteratively

Q. Pause and explore to better understand

Pattern languages
Designing pattern languages

WHATS THIS?

, I THINK HE
(DOUGLAS HOFSTADTERS -+ WHOA.

SIX-WORD AUTDBIOGRAPHY. | | Tt So Mema, Even Tris Aceowmm g MA?:D K

AFTER ALL THOSE T00-PAGE
ToMES, T GUESS HE WRNTED
TO TRY FOR BREVITY,

HOH. LETS SeE... (

%

Pattern languages
for creating

Eﬁ pattern languages

No single systematic
method that woulo
always work

Where patterns come from

2 Shared and evolved in a community
8 Repeated solutions in past software systems
= Personal experience with a problem
& ~ocused group collaboration (origins of wiki!)

Context Setting Patterns

Pattern Pattern Language
N —
C ; . E
Pattern Naming & Making Language
Structure Referencing Patterns Structure
T Mandatory 1 Relationship to Understand- 1 Pattern
Elements Present Other Patterns Language
able Summary
2Optional Elements 2 Readable 1 Clear Target
When Helpful References to Audience 11 Problem/
Patterns | Solution Summary
3 Visible Forces . X 2 Terminology >
-1 (External) Tailored to Common
7 o Pattern Thumbnail Audience Problems
Single-Pass -
Highlighted
Readable
3 Evocative 3 Understood
5 Skippable Pattern Name Notations 3Runnlng Example .
Sections N~ 0 0N
3.1 Noun 4 Distinctive

6Findable Sections

Phrase Name

4 Code Samples

3.2 Meaningful
Metaphor Name

4 Intent Calalog .

5 Code Samples
as Bonus

Headings Convey
Structure

5 Glossary

(Meszaros+Doble, '97)

How to structure, write
and present patterns &
pattern languages

1dea Deposit
Qualitative Memory
Quantity over Quality. a3
" Collecting Clues
Inducing Talks
Chain Conversations —__\ MAZ

> Searching through

One Section at a Time' Cﬂnvmms

MA1
Mining Atmosphere Strategy fm
Discoveries
Own Gut Fecling
Grasping the Process

Cushion Space

Element
Comprehension Talking while Moving
Element Pairing
Environment Pusence Digging
for Focusing .
Iterative Questioning
Grasping the —

Mined Elements G[oup Thinking

Active Inquiry
/ Discovering the Islands
/ Finding chrlaps £~ K
Expcncnce Mining Drawing a Map N Mapping Islands
Island Decoding
‘ Recallable Labels
MC1

Pattern Mining ___— Finishing the Labels

Tayout Label Making
. . Natural Flow
with Contrast The Whole and the Parts
Borrowing Quality / sc3 . M‘fz
User-Iriendly Structure ______ pincer Structuring
Order of . i
Dot Layout Digging for the — Building
Wide sc2 Sceds of Patterns Position Confirmation
ide Range —— ualjtative Depth
The C--§
Poetic Softness ——
sct1 __Fditing Literature MC3 ‘Writer Assigament
Emotional Pull-in Grabbing 1look cpS Witing
Meaning Refinement Vinishing the CPS

Creating Fxcitement
Be in their Shoes \
s83

Pattern Language
Creation

Grasp the Source

Personal Parallels
WA1

Natural Cuteness Breathe Life ’
Materials ©——— Leaving Lootprints
for Inquiring
Natural Lxpressions. -
. Pattern Symbolizing / ‘Searching Around
wa2
Stand in the Scene — Painta World Meticulows _— pecp Diving
. i D
Tmage Depth prage Draving e N e ac
- Tnquiry by Writing Take a Step Back
1
. A Symbolic Picce
Intuitive —— WA3
Comprehension Soing Dyord

Line of Lxpression From the Whole
1o the Parts

Capture the World

Fasy First Step \ gymb(,] of
Atmosphere _—— {he Future
ofthe Word

sA2

Words ft
Adaptable Words — D:"NEU‘:; Expressing
the Essence SA1

Cmnng Words Pattern Writing

Persistence _————ihe Individual

to Improve ~_

‘nduring Curiosity

Spiral Growth

Push on the Back
Grasping the Problem
wB1 / e
mgmmn 7 New Perspective
Expressions that Finding the Essence
. wez /

Memorsble Words = Ropressions
ove PEOPIE ™~ Ppersuasive
. _— . Sentence Tweak;
Imaginable Words iy 'g;;',‘:mn Essence Behind Building a View entence Tweaking
. the Sentence of the World Finishing it
New Words wes as Literature:
Empathetic
wes wea T Weaving v
Media to Create ﬂ.e Who]g Reader's Context

the Future
Proposing

Making Change

P ADifferent World
new Aesthetics / / mm“g Evolving Feelings
Mn.km Coherence
Common Language Author's Sease Conmsiions Words to be Shared

Trustable Vision Drawing an Ideal Top-Down Gazing

A pattern language
for creating

pattern languages
Iba+lsaku, 2016

Ints on
attern mining

ollect experiences
ap and find overlaps
Structure in clusters

How to write a pattern language

»k Patterns are about resolving forces

BB Patterns should have fixed format

B Context forces, structure, related patterns
an System structure or human interaction with it

Concepts and methods
Learning from architecture

Learning from

unaverage clues
(Jacobs, 1961)

Cannot reduce city

to g single statistic

‘m MGHRIMAS i{‘ A=< Look for informative
g

ALL

: = HURII! mmmj,t nssou@hn Slﬂ g | e.t Oﬂ Cl U e Sl

Commodore 64 BASIC

10 PRINT CHR$(205.5+RND(1)); : GOTO 10

Technical aspects

e Edit &runinoneterminal
e Line numbers for navigation
e Simple with POKE for hackers

Social aspects

e Path from a user to a programmer
e Commodore 64 boots into BASIC!
e | earn by copying from magazines

What works

despite the theory
(Jacobs, 1967)

Flegant theories
that are convincing
but do not work

Document what
actually works
In practice instead!

Good software engineering

e Divide systems into modules
e Hide implementation details
e EXxpose only what is needed

Why should this work?

e BAasic priﬁcip|e of OOP! The International I‘Jang%tage
. for Software Engineering

e Can freely change internals

e Modules developed independently

Information hiding

Brief history

e Decomposing systems (1972) [Beleeliel
e |IBM 0S/360 development (1975)

e Brooks' reflections (1995)

e Cathedral and the bazaar (1999)

Critigue and alternatives

e Designis hard to anticipate
e Cumbersome & inefficient uses
e MIDI SyskEx and UNIX DWARF work!

myttl}ﬁcﬂl

man-month

Essays on Software Enginesring

Frederick P. Brooks, Jr.

(Brooks, 197/5)

A clean, elegant
nrogramming product
must present to each of its
Users a conerent mental
model of the application.

Conceptual integrity
IS the most important
factor in ease of use.

NoO grand narrative

set out to deconstruct all the computer
anguages and recombine them. | lovingly
reused features from many languages.

Why this works

e \Norse Is better
e Postmodernists prefer AND, modernists OR
e POssible to write messy & clean programs

Worse is better

The right thing

e Common LISE TS system
e NO Incorrectness / inconsistency
e Completeness, then simplicity

Worse is better

® U N |>< a ﬂ d C |a ﬂ g U a g e lllh‘?:l:v(:.l::“g“ thm u:phei:tnc:t -d p-rofesslonal vtl’rorkstatlon
e Simple is better than correct,
consistent & complete

Concepts and methods
Unexplored inspirations

Letiété Viclava Havia Praha
Vaclav Havel Airport Prague.

o]

fisiiey
Nadrati Podbaba | €

(s]0]
@, Hradéanska

O] -
LETNANY
f-—m“ ;
05{ C

Nadrs
Holesovice

Sidiste @ Petiing
Petiiny

FE N

Bila Hora

AL

NEMOCNICE
MoToL
Sidisté Repy
(S}

@ ~€sus
ZLIEIN
Stodiilky

Luka

Luzing Hirka Nové
Butoy

Malostranska @,

Radlicks

Jinonice Radlicka

sidiiste
Barrandov

Staromestsk:

Andél

o Pallmovia ous
oubétin
Vitgvska
L‘_ Eres)

o=

V

idlite Dalice

Ladvi

(-]
©

Prosek

. (S)
Ceskomoravsks_Vysotansks _Kolbenova

© Lehovec
fnvalidovna
Rajska
Kiizikova zahrada
Florenc
el
Spojovaci

Zelivského

Yo O (Ustredni
A dinyop
DEPO HOSTIVAR
-]

Strasnicka, [
\e

(5]

Skalka

Smichovske © o4
nadrazi 1oy
Nadrati Hostivar

1oy

Spoiov

Pankrdc 4
.)
Budejovicka

m(:] C

Katerov Roztyly ~ Chodov ~ Opatov HAJE
@ (]

How do we navigate
around cities?

And codebases?

Districts, landmarks
and pathways

Good design supports
navigabllity and leqibility

Materials

Building materials
that look bad before
they go bad

Software tends to
break abruptly without
any warning...

'S there an alternative?

VVernacular
architecture

Achieves a good fit
without the continuous
reinvention of forms

Can we build software
without reinventing
forms”? Spreadsheets?
Configuration?

Conclusions
_earning from architecture

Evaluation

Performance evaluation
User experiments

Case studies

Expert evaluation
Formalism and proof
Qualitative user studies

Requirements
and Creation

Interviews

Corpus studies
Natural Programming
Rapid Prototyping

Figure 1. A typical design process

Conceptual design rather
than empirical science

Powerful methodologies
for idea generation

Appropriateness is harder
to evaluate - wait and seel

No information hiding? E

e \Jarv: Reprogrammable Interactive
Sofware as a Declarative Data Structure il

e Available at:
Nttp://vis.csail.mit.edu/pubs/varv.paf

What to read and how

e Declarative, extensible programming!
e Get asense of how it works (Section 2)
e | 0Ok at evaluation (Section 5)

http://vis.csail.mit.edu/pubs/varv.pdf

Learning from architecture and design

e Methods & concepts for complex systems
e Architecture, urban planning and design
e Design patterns & pattern languages

Tomas Petricek, 204 (2nd floor)

™ petricek@d3s.mff.cuni.cz

© nitps//tomasp.net | @tomaspetricek

© nittps/d3s.mff.cuni.cz/teaching/nprg07/5

mailto:petricek@d3s.mff.cuni.cz
https://tomasp.net/
http://twitter.com/tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg075

References (1/3)

Recommended

e Parnas, D. L. (1985). Software aspects of strategic defense systems.
Communications of the ACM, 28(12), 1326-1335.

e Singer, J. (2020). Notes on notebooks: Is Jupyter the bringer of
jollity? In Onward!

e Taeumel, M. et al. (2022). A Pattern Language of an Exploratory
Programming Workspace. Design Thinking Research

o Gabriel, R. (1991). Lisp: Good News, Bad News, How to Win Big

Just for fun...

e Symbolics inc. (1983). Introducing the sophisticated professional
workstation. IEEE

https://dl.acm.org/doi/10.1145/214956.214961
http://www.dcs.gla.ac.uk/~jsinger/notebooks.pdf
http://www.dcs.gla.ac.uk/~jsinger/notebooks.pdf
http://www.hpi.uni-potsdam.de/hirschfeld/publications/media/TaeumelLinckeReinHirschfeld_2022_APatternLanguageOfAnExploratoryProgrammingWorkspace_AuthorsVersion.pdf
http://www.hpi.uni-potsdam.de/hirschfeld/publications/media/TaeumelLinckeReinHirschfeld_2022_APatternLanguageOfAnExploratoryProgrammingWorkspace_AuthorsVersion.pdf
https://www.dreamsongs.com/WIB.html
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4037519
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4037519

Design patterns

e Meszaros, G, & Doble, J. (1998). A pattern language for pattern
writing. Pattern languages of program design, 3

o IDa, T, &lIsaku, T. (2016). A pattern language for creating pattern
languages: 364 patterns for pattern mining, writing, and symbolizing.

PLoOP 2016
e Sasabe, A etal (2016). Pattern mining patterns: a search for the
seeds of patterns. Conference on Pattern Languages of Programs

Software classics

e Brooks Jr, F. P (1975). The mythical man-month. Addison-Wesley

e Raymond, E. S. (1999). The cathedral and the bazaar. O'Reilly

e Gamma, E. etal (1994). Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley.

http://xunitpatterns.com/~gerard/plopd3-pattern-writing-patterns-paper.pdf
http://xunitpatterns.com/~gerard/plopd3-pattern-writing-patterns-paper.pdf
https://dl.acm.org/doi/abs/10.5555/3158161.3158175
https://dl.acm.org/doi/abs/10.5555/3158161.3158175
https://hillside.net/plop/2016/papers/proceedings/papers/sasabe.pdf
https://hillside.net/plop/2016/papers/proceedings/papers/sasabe.pdf
https://www.oreilly.com/library/view/mythical-man-month-the/0201835959/
http://www.catb.org/~esr/writings/cathedral-bazaar/
https://www.oreilly.com/library/view/design-patterns-elements/0201633612/
https://www.oreilly.com/library/view/design-patterns-elements/0201633612/

Architecture books

e Jacobs, J. (1967). The Death and Life of Great American Cities.
Random House.

o Alexander, C. (1964). Notes on the Synthesis of Form. Harvard.

o Alexander, C.etal (1977). A Pattern Language. Oxford.

o Alexander, C. (1979). The Timeless Way of Building. Oxford.

e Lynch, K. (1964). The image of the city. MIT press.

Programming design

e Wall, L. (1999). Perl, the first postmodern computer language. Online

e Noble, J, & Biddle, R. (2004). Notes on notes on postmodern
orogramming. ACM SIGPLAN Notices, 39(12)

o Petricek, T. (2022). The Timeless Way of Programming. Online.

e Clark, C, & Basman, A. (2017). Tracing a paradigm for
externalization: Avatars and the GPIl Nexus. Salon des Refusés

http://www.randomhousebooks.com/books/86058/
https://www.hup.harvard.edu/catalog.php?isbn=9780674627512
https://global.oup.com/academic/product/a-pattern-language-9780195019193?cc=cz&lang=en&
https://global.oup.com/academic/product/the-timeless-way-of-building-9780195024029?lang=en&cc=cz
http://mitpress.mit.edu/9780262620017/
https://www.perl.com/pub/1999/03/pm.html/
https://homepages.ecs.vuw.ac.nz/~kjx/papers/nopp.pdf
https://homepages.ecs.vuw.ac.nz/~kjx/papers/nopp.pdf
http://tomasp.net/blog/2022/timeless-way/
https://refuses.github.io/preprints/avatars.pdf
https://refuses.github.io/preprints/avatars.pdf

