
NPRG075
Heuristic evaluation of
programming systems

Tomáš Petříček, 204 (2nd �oor)
✉
 |

Lectures: Tuesday 12:20, S6

petricek@d3s.mff.cuni.cz
https://tomasp.net @tomaspetricek

https://d3s.mff.cuni.cz/teaching/nprg075

mailto:petricek@d3s.mff.cuni.cz
https://tomasp.net/
http://twitter.com/tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg075

Programming systems
What really matters?

Programming systems
What can we study?

 Formal semantics and type safety
⌨ Learnability for novice programmers
 Socio-technical context of the system
 Principles behind the system design

What makes a
language popular
None of the things
we talked about?

Popular Good

The index has its �aws

Still, a reason to think!

=

Most loved or
most dreaded?
Enthusiastic
community?
Good tooling?
Clean idea?
Practicality?

Need to talk about
less exact things!

Analysis of language perceptions
Survey analysis

Survey of language characteristics
Feature and language correlations
tinyurl.com/nprg075-socio

Adoption of languages
Libraries matter
Legacy and history matter
Flexibility more important than correctness

https://lmeyerov.github.io/projects/socioplt/viz/index.html

Programming systems
Important but hard to study

 Expressivity of the programming notation
 Unifying conceptual model ("everything is ...")
☝ Style of interaction with the system
 Extensibility and �exibility of the language

Heuristic analysis
High-level rules,
characteristics or
principles

Developed by experts,
based on reviews and
experience

Useful for evaluation,
classifying, analysis,
new design

Programming systems
Heuristic frameworks

 Levels of liveness of programming systems
 Memory models of programming languages
 Cognitive dimensions of notation
 Technical dimensions of programming systems

Programming systems
Liveness and memory models

From batch
processing ...
Coding at the computer
prohibitively expensive

Write program, punch on
cards, submit & wait

A few day feedback cycle!

... to live coded music performance
Break - DJ_Dave (Live Coded Performance)Break - DJ_Dave (Live Coded Performance)

https://www.youtube.com/watch?v=KGzqyGaYyqs

Visual programming
Planning and coding of
problems for an electronic
computing instrument
(Goldstine, von
Neumann, 1948)

Liveness levels
(Tanimoto, 1990)

Level 1
Flowchart that exists
independently of a program

Level 4
Continuous processing
with immediate dynamic
change of behaviour

Liveness levels
Programming system heuristic

 Single property of speci�c systems
 Can be used for comparing systems
 Imagines step beyond the state-of-the-art
 Can be used for designing new systems

Memory models of systems
Primary representation

How things are represented
De�nes what can be done
De�nes how to think!

Six major conceptualizations
COBOL, LISP and FORTRAN
SQL, UNIX and tape storage
In reality, it's always a mix!

Language memory models
 COBOL - Memory is a nested record (tax form)

No need for pointers, but no sharing allowed
 LISP - Memory is an object graph (symbol list)

Flexible, but serialization & e�ciency tricky
 FORTRAN - Memory is a bunch of arrays (vector)

Close to the metal, but no semantic checking

Storage memory models
⇄ PIPES - Magnetic tape model (I/O streams)

Speci�c, but great for some problems (MapReduce)
 MULTICS - Tree with blob leaves (�le system)

Legible, allows separation; rarely used in full
 SQL - Memory is a set of relations (tables)

Expressive query language, c.f. Prolog and similar

Memory models
Programming system heuristic

⌨ Single property of any programming system
 Categorical rather than ordinal
 Sheds light on what exists
 Open to questioning, e.g., is that all there is?

Notations
Cognitive dimensions

Notations and humans
Notations in computing

Programming languages
Markup and con�g �les
Rule and macro editors

User experience questions
Does the notation structure
support activities of the user?
Is one notation the best?

Cognitive dimensions
Programming system heuristic

 Comprehensible broad-brush evaluation
 Understandable for non-specialists
 Distinguish different user needs
 Prompt designers to see more choices

Dimensions ×
Activities
Variety of dimensions
For a given activity

Activities

Generic activities
involving notations

Each has different
notational needs

Activities with different needs
 Incrementation - adding formulas to spreadsheet
 Transcription - copying data from paper
 Modi�cation - changing formula in a spreadsheet
 Exploratory design - designing software structure
 Searching - �nding uses of a function
 Exploratory understanding - understanding code

Dimensions ×
Activities
Variety of dimensions
For a given activity

Dimensions

Characteristic
of the notation

Human-computer
interaction analysis
perspective

Example cognitive dimensions (1/2)
 Viscosity - Resistance to change
 Visibility - Ability to view components easily
 Premature commitment - Need to decide too early
 Hidden dependencies - Important links not visible
 Role-expressiveness - Purpose of an entity is clear

Example cognitive dimensions (2/2)
⚛ Error-proneness - Notation invites mistakes
 Abstraction - Types and availability of mechanisms
 Consistency - Similar syntax has similar semantics
 Diffuseness - Verbosity of language
 Hard mental operations - High cognitive demand

Case study
Two ways of specifying
email �lters

Visual rule editor vs.
scripting language

Visual editor

Two ways of specifying email filters
Scripting language

Incrementation
Adding new condition

Viscosity
Not all additions possible

Abstraction
Condition format is �xed

Hard mental operations
Everything is simple & clear

Incrementation
Adding new condition

Viscosity
Edit text for any change

Abstraction
Possible via a script

Hard mental operations
Understanding code is hard

Two ways of specifying filters
Cognitive dimensions

Used for evaluation
Consider activities & dimensions
Clear lists to use

What is a better notation?
Wrong question: different trade-offs!
UI is viscose, less abstract, but simpler
Script has abstractions, less viscose, but harder

Block based
visual languages
Contrast with text for
addition (writing code)

Premature commit
Diffuseness / verbosity
Abstraction
Error-proneness

Programming systems
Technical dimensions

From languages to systems
Programming system is
Integrated and complete set of
tools su�cient for creating,
modifying, and executing programs

These will include
Notations for structuring programs
and data, facilities for running and
debugging programs, and interfaces
for performing all of these tasks.

Interesting programming systems
Research and industry

Low-code and no-code startups
Live & interactive systems
Interesting code editors

How do we talk about these?
Di�cult to say what is new
Hard to look beyond the interface
Programming systems deserve a theory too!

Technical dimensions
Based on analysis of past
and modern systems

Capture their key
characteristics

Describe a range of
possible values

Descriptive, not prescriptive

Interaction
Feedback Loops
Modes of interaction
Abstraction Construction

Notation
Notational Structure
Surface/Internal
Primary/Secondary
Expression Geography
Uniformity

Error Handling
Error Detection
Error Response

Technical dimensions catalogue
Conceptual Structure
Integrity/Openness
Composability
Convenience
Commonality

Customizability
Staging
Externalizability
Additive Authoring
Self-Sustainability

(Others)
Degrees of Automation
Learnability & Sociability

Notational uniformity
Post-modernist

Variety of different notations
More to learn, but better problem �t
Perl language, Web platform

Modernist
Small set of uniform primitives
Not everything �ts the notation
Lisp and (partly) Smalltalk

Self-sustainability
Separate language level

Implementation vs. user level
Limited changeability from within
Java and other languages

Integrated systems design
Implemented & modi�able in itself
Often changeable at runtime
Smalltalk, Lisp Machines

Abstraction construction
From Concrete

Generalize from examples
Expanding range in Excel
Pygmalion system

From Abstract
De�ne function �rst
Most programming languages
Coding done without values

Technical dimensions
Programming system heuristic

 Making sense of different systems
 Broad strokes and high-level
 Useful for making comparisons
 Useful for �nding gaps in design space

Conclusions
Heuristic analysis

Heuristic analysis of
languages
Both idea generation
and evaluation

Depends on the
kind of heuristic

Categorical allows
questioning

Ordinal allows for
degree comparison

Reading
CDs in the real-world!

A Usability Analysis of Blocks-based
Programming Editors using
Cognitive Dimensions

 ()tinyurl.com/nprg075-blocks SciHub

Why read this paper
Example of rigorous analysis
Based on a user study
Equally possible with expert assessment

https://ieeexplore.ieee.org/abstract/document/8506483
https://sci-hub.se/https://ieeexplore.ieee.org/abstract/document/8506483

Conclusions
Heuristic evaluation of programming systems

Memory (categorical) and liveness (ordinal)
Cognitive and technical dimension frameworks
Broad-brush map of the design space
Useful for evaluation and novel design ideas

Tomáš Petříček, 204 (2nd �oor)
✉
 |

petricek@d3s.mff.cuni.cz
https://tomasp.net @tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg075

mailto:petricek@d3s.mff.cuni.cz
https://tomasp.net/
http://twitter.com/tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg075

References (1/2)
Live visual programming

Tanimoto, S. L. (1990). ,
Journal on Visual Languages
Tanimoto, S. L. (2013).

, LIVE

Language adoption & Heuristics

Meyerovich, L. A., Rabkin, A. S. (2013).
, OOPSLA

Meyerovich, L. A., Rabkin, A. S. (2012).
, Onward!

Nielsen, J. (1994). .
Norman-Nielsen Group

VIVA: A visual language for image processing

A Perspective on the Evolution of Live
Programming

Empirical Analysis of
Programming Language Adoption

Socio-PLT: Sociological
Principles for Programming Language Adoption

10 Usability Heuristics for User Interface Design

https://sci-hub.se/https://www.sciencedirect.com/science/article/abs/pii/S1045926X05800126
http://projectsweb.cs.washington.edu/ole/Liveness2013.pdf
http://projectsweb.cs.washington.edu/ole/Liveness2013.pdf
https://raw.githubusercontent.com/lmeyerov/lmeyerov.github.io/master/projects/socioplt/papers/oopsla2013.pdf
https://raw.githubusercontent.com/lmeyerov/lmeyerov.github.io/master/projects/socioplt/papers/oopsla2013.pdf
https://raw.githubusercontent.com/lmeyerov/lmeyerov.github.io/master/projects/socioplt/papers/onward2012.pdf
https://raw.githubusercontent.com/lmeyerov/lmeyerov.github.io/master/projects/socioplt/papers/onward2012.pdf
https://www.nngroup.com/articles/ten-usability-heuristics/

References (2/2)
Cognitive, technical & memory models

Sitaker, K. J. (2016).
, Online

Jakubovic, J. et al. (2023).
, Programming

Holwerda, R., Hermans, F. (2018).
, VL/HCC

Blackwell, A., Green, T. (2002).
. (Chapter)

A bit of history

Goldstine, H., von Neumann, J. (1947).
, Princeton

The memory models that underlie
programming languages

Technical Dimensions of Programming
Systems

A usability analysis of blocks-
based programming editors using cognitive dimensions

Notational Systems – the Cognitive
Dimensions of Notations framework

Planning and coding of
problems for an electronic computing

http://canonical.org/~kragen/memory-models/
http://canonical.org/~kragen/memory-models/
https://raw.githubusercontent.com/jdjakub/papers/master/prog-2022/prog22-master.pdf
https://raw.githubusercontent.com/jdjakub/papers/master/prog-2022/prog22-master.pdf
https://ieeexplore.ieee.org/document/8506483
https://ieeexplore.ieee.org/document/8506483
https://www.cl.cam.ac.uk/~afb21/publications/CarrollChapter.pdf
https://www.cl.cam.ac.uk/~afb21/publications/CarrollChapter.pdf
https://www.ias.edu/sites/default/files/library/pdfs/ecp/planningcodingof0103inst.pdf
https://www.ias.edu/sites/default/files/library/pdfs/ecp/planningcodingof0103inst.pdf

