
NPRG075
Programming language design

Tomáš Petříček, 204 (2nd floor)

 |

Lectures: Tuesday 12:20, S6


petricek@d3s.mff.cuni.cz
https://tomasp.net @tomaspetricek

https://d3s.mff.cuni.cz/teaching/nprg075

mailto:petricek@d3s.mff.cuni.cz
https://tomasp.net/
http://twitter.com/tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg075

Introduction
What? Why? How?

Making programming
(languages | experience | systems)

better!

My background
 PhD, University of Cambridge

Context-aware programming languages
 Microsoft Research Cambridge

F# and applied functional programming
 The Alan Turing Institute, London

Expert and non-expert tools for data science
 University of Kent, Canterbury

Programming systems and learning from the past

Types for context-
aware programming
Program as expression in
small formal language

Type system determines
what programs are valid

Safety proof shows no
unauthorized accesses

Data science tools
and languages
Result is a document
not a program

Working with one
concrete dataset

Different language and
system requirements!

Programming
systems & history
Interacting with a
stateful environment

Let programmers do
more in new ways...

It's not just a language!

Bringing everything together
Systems ⊃ languages

Programming process matters
Tools shape languages
Harder to formalize & study!

Interdisciplinary research
Formal language models
Systematic design
Qualitative and quantitative studies

Case study: LINQ
LINQ queries in Visual Basic .NET and C#

Dim db As New northwindDataContext
Dim ukCompanies =
 From cust In db.Customers
 Where cust.Country = "UK"
 Select cust.CompanyName, cust.City

Why confuse programmers familiar with SQL?
SELECT [CompanyName], [City]
WHERE [Country] = 'UK'
FROM dbo.[Northwind]

What to expect?
Content and materials

Many different programming systems
TypeScript, Jupyter, ML/F#, Smalltalk, BASIC

Many different research methods
Design, logic, proofs, user studies

Evolving course from two years ago
Slides on the web, but no textbook

Credit / zápočet
Small independent
or group project

Using any of the
covered method

Described in a brief
report (4 pages)

Deadlines
Topic by December 20
Draft by February 28

Programming
Langauges and
Systems in Prague

Check out !

Join our reading group
(on Wednesday)

Find other cool courses
(MFF and firends at FIT)

Sign up for email updates

prgprg.org

https://prgprg.org/

Programming languages
Conventional topics

Paradigms and features
Language paradigms

Functional, OOP, Logic, etc.
Their fundamental concepts
Interesting "extreme" designs

Language features
Variable scoping, pointers
Lambda abstraction, inheritance
Design and implementation

Theory and implementation
Parsing and automata

Theory of formal grammars
Parser implementation
Computability theory

Compilers and interpreters
Implementation techniques
Register allocation
Meta-circular interpreters

Why is this
not enough?
Talks about "how"
but not about "what"

Treat design as a
research problem!

What can we study
about programming
systems?

Design
As a research discipline

What is design?
Design is the intentional
solution of a problem, by
the creation of plans for a
new sort of thing, where
the plans would not be
immediately seen, by a
reasonable person, as an
inadequate solution.

Parsons (2015)

Designerly ways
Sciences study natural world

By experiment, aiming at truth

Humanities study experience
By analogy, aiming at justice

Design studies the artificial
By synthesis, aiming at appropriateness

Cultures of programming
Common ways of thinking

Cultures of
programming
Different basic
ways of thinking

What is a computer
program, how to best
create one?

Five different cultures
of programming!

Case study: TypeScript
Unsoundness by design

Type checking limitations!
It's a feature, not a bug?
tinyurl.com/nprg075-ts

Design questions
What research methods to use?
Is partial soundness a thing?
Is there a better design?
What does "better" mean?

https://github.com/Microsoft/TypeScript/issues/9825#issuecomment-234115900

Cultures of programming
Engineering culture

Programs are complex systems
Tools can help us cope
Careful balance of trade-offs

Mathematical culture
Programs as formal entities
Like good mathematics...
Safe, composable, elegant

Cultures of programming
Humanistic culture

Augmenting human intellect
Programming helps us think
Language close to human concepts

Hacker culture
Programs are fundamentally bits
Do not restrict the programmer
Convenience, but full access

Type safety
Different perspectives

 Safety is the very essence of types!
 Useful as long as it makes programming easier
 Sometimes, you need to break the rules
 Does it help programmers think better?

Research methods
Interdisciplinary research

Interdisciplinary
programming
language research

Creating designs
Interviews, prototyping,
formalism, analysis, history

Evaluating designs
Qualitative and quantitative
studies, formal proofs

Coblenz et al. (2018)

Research methods
 Formal and mathematical

Designing a formal mathematical system
 Theoretical and conceptual

Derive design from theoretical principles
 Empirical methodologies

Measure and evaluate observable data
 User-centric methods

Study users and how they actually work

Programming
language theory
Prove properties about
small formal models

"Well-typed programs
do not go wrong"

Discover and avoid
subtle mistakes!

Human-centric
system design
User studies,
questionnaires,
interviews, etc.

Qualitative analysis to
design & test ideas

Quantitative analysis to
compare designs

History of
programming
What interesting past
ideas were lost?

And the socio-political
reasons for that?

Use history as source
for new design ideas!

Conclusions
What to expect

Course outline
Preliminary structure

Design - Design and pattern languages
Usability - Human-centric language design
Semantics - Formal models of programming
Types - Types and type safety proofs
Beyond - Unexpected perspectives on types
Paradigms - History and programming systems
Complementary - Learning from past systems
Cognition - How humans think about programming

Reading
Jeremy Singer on Notebooks

Notes on Notebooks: Is Jupyter the
Bringer of Jollity?
Available at:

http://www.dcs.gla.ac.uk/~jsinger/notebooks.pdf

Why should you read this?
You'll get more out of the lecture...
Perfect for the morning tram ride :-)
Notebooks are curious programming systems!

http://www.dcs.gla.ac.uk/~jsinger/notebooks.pdf

Conclusions
How to do research about
programming language design?

Inherently interdisciplinary topic
Logic, design, user studies, history & more!

Tomáš Petříček, 309 (3rd floor)

 |


petricek@d3s.mff.cuni.cz
https://tomasp.net @tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg075

mailto:petricek@d3s.mff.cuni.cz
https://tomasp.net/
http://twitter.com/tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg075

References
Methodology

Coblenz, M., et al. (2018).
. ACM Onward!

Parsons, G. (2015). . John Wiley & Sons
Cross, N. (2007). . BIRD

Assorted examples

Marasoiu, M. et al. (2019).
. Springer

Pierce, B. C. (2002). . MIT Press
Petricek, T., Jakubovic, J. (2021).

. HaPoC
Petricek, T. (2017).

. University of Cambridge

Interdisciplinary
programming language design

The philosophy of design
Designerly ways of knowing

Cuscus: An end user
programming tool for data visualisation

Types and programming languages
Complementary science of

interactive programming systems
Context-aware programming

languages

https://dl.acm.org/doi/pdf/10.1145/3276954.3276965
https://dl.acm.org/doi/pdf/10.1145/3276954.3276965
https://www.wiley.com/en-us/The+Philosophy+of+Design-p-9780745663890
https://www.bird-international-research-in-design.org/books
https://link.springer.com/chapter/10.1007/978-3-030-24781-2_8
https://link.springer.com/chapter/10.1007/978-3-030-24781-2_8
https://www.cis.upenn.edu/~bcpierce/tapl/
http://tomasp.net/academic/drafts/complementary
http://tomasp.net/academic/drafts/complementary
https://tomasp.net/coeffects/
https://tomasp.net/coeffects/

