Programming language design

Tomas Petricek, 204 (2nd floor)
™ petricek@d3s.mff.cunicz
© nitps//tomasp.net | @tomaspetricek

Lectures: Tuesday 12:20, S6
© nittps/d3s.mff.cuni.cz/teaching/nprg07/5

mailto:petricek@d3s.mff.cuni.cz
https://tomasp.net/
http://twitter.com/tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg075

Introduction
What? Why? How?

Making programming
languages | experience | systems)
better!

PhD, University of Cambridge
Context-aware programming languages

E)

Microsoft Research Cambridge
~# and applied functional programming

b The Alan Turing Institute, London
Expert and non-expert tools for data science

M University of Kent, Canterbury
Programming systems and learning from the past

: I

(var) leausebkx:7 (:rer)

(const) -
'@ign Fn:num

@) r@T‘FE]:’ﬁi}TZ lastk ez : Ty

“wp Far® (s®t) ey ez2:12
MNx:myer/ Aske:1

(abs)

S
MerkAx:t7.e: 11 > 12

Nerte;:m MNx:tiesker:t
[es @ (s@®T)Fletx=-¢€; inex: T2

(let)

Frer’'Fe:t

!
<
lFarbe:t (r'<r)

(sub)

Figure 22: Type system for the flat coeffect calculus

Program as expression in
small formal language

Type system determines
what programs are valid

Safety proof shows no
unauthorized accesses

Data science tools
A, an d | an g ua ge S

An example: visualizing data in the notebook

Below is an example of a code cell. We'll visualize some simple data using two popular packages in
Python. We'll use NumPy to create some random data, and Matplotlib to visualize it.

.
Note how the code and the results of running the code are bundled together. R e S U | -t I S a d O C U I | l e n -t
from matplotlib import pyplot as plt
Rk not a program

Generate 100 random data points along 3 dimensions
X, ¥y, scale = np.random.randn(3, 100)
fig, ax = plt.subplots()

. .
Map each onto a scatterplot we'll create with Matplotlib
ax.scatter(x=x, y=y, c=scale, s=np.abs(scale)*500) | WI

ax.set(title="Some random data, created with JupyterLab!™)

o concrete dataset
O
| . 9o Different language and
N ®

system requirements!

-1

-2 4

-3 Y

OG:’;'JZT’ 12, 1977 XERDX — LearmngResearch Group

1049 am
SCTeeth restore

1314 disk pages Strallitalk quit
Changes
Filzg

e Interacting with a
stateful environment

Messages
Hardcapy

Tl 28
AT TR

wvant Regp] [5 15 1@ Stperchass for presencing windoms onde dsply. e L et rO ra I l I l e rS d O
enger [self o T0hs conom uicdl die srylus s depressnd. orside. Tidle i
caitiehdT0ds om0 dsrinegs ressages o iravlf hased oil wser

leave [doci T LTI,

ounMentl e eduling Mmaore Iﬂ new \/\/8§/S

[edit el STHTUp
somllpar 4 [Frone contains: stylus locs

[self enter.

repeal s
[frrf,gwbcon&atns_: StuEaMSLfLDg:b Al I . I

eyboard active=[self keyboar
STYUS dovne [Self pendmim]] |t t t |
caf i o _ S NOT JUStT a language:!
s down=[self leare]]] p
Mfalse]

Default Event Eesponses
enter [self show]

Leave
Formy Editor ourside [1ifolse]
[keyboard next. user flash]

Titde [{idocu

mage
shou%

[frame outline.
mﬁ Tame put: self tide at: frome origine + citleloc,

Bringing everything together

Systems D languages

e Programming process matters
e [00ls shape languages
e Harder to formalize & study!

Interdisciplinary research

e Formal language models
e Systematic design

3

Home Insert Pagela

yout

sum - X v fe | =D21D21/2700000

Help

D E F G H | J K B
Pl Input gActual gQuadratic g
J 0 0 0 Actual run time vs Expected
4 1000 1 0.37037037 run time for nA2
5 2000 3 1.48148148
6 3000 3 3.33333333| | 160
7 4000 6 5.92592593| 140
8 5000 9 9.25925926| 150
9 6000 13 13.3333333] o
10 7000 18 18.1481481 %0
1 8000 22 23.7037037
12 9000 28 E
13 10000 34 37.037037 40
14 11000 41 44.8148148 20
15 12000 49 533333333 0
Q O O O O O L L
Bl momm S SSSSSSS
18 15000 77 83.3333333 ———Actual ———Quadratic
19 16000 87 94.8148148
20 17000 118 107.037037
21 18000 114|=D21*D21/2700000
22 19000 131 133.703704)
23 =l
_sheett | . L 7 L]
T —. 5 m

e Qualitative and quantitative studies

LINQ queries in Visual Basic NET and C#

Dim db As New northwindDataContext
Dim ukCompanies =

From cust In db.Customers

Where cust.Country = "UK"

Select cust.CompanyName, cust.City

Why confuse programmers familiar with SQL?

SELECT [CompanyName], [City]
WHERE [Country] = 'UK'
FROM dbo. [Northwind]

Content and materials

Many different programming systems
TypeScript, Jupyter, ML/F#, Smalltalk, BASIC

Many different research methods
Design, logic, proofs, user studies

Evolving course from two years ago
Slides on the web, but no textbook

Credit / zapocet

Small independent
or group project

Jsing any of the
covered method

Described in a brief
=L report (4 pages)

Fortran

Deadlines
Topic by December 20
Draft by February 28

Prague Programming Languages and Systems Research Network

Curious About Programming Languages?

We bring together researchers and students interested in programming
languages and programming systems based in Prague.

Join Our Events

We organize regular reading group meetings, informal lunch meetings
and we keep a list of courses on programming language topics.

Work with Us

We offer arange of topics for student projects, Bachelor and Master
theses, as well as opportunities for prospective PhD students.

http://prgprg.org

Receive email updates

Sign up online to receive updates about reading

group meetings, talks, project opportunities and
other programming language and systems news!

Programming
Langauges and
Systems in Prague
Check out prgprg.org!

Join our reading group
(on Wednesday)

~ind other cool courses
(MFF and firends at FIT)

Sign up for email updates

https://prgprg.org/

Programming languages
Conventional topics

Langua.ge parad|gm's PROGRAMMING
e Functional, OOR Logic, etc. LANGUAGES:

e Their fundamental concepts Fundamentals B8
e [nteresting ‘extreme’ designs |

JEAN E. SAMMET [N e

Language features

e \/ariable scoping, pointers
e [ambda abstraction, inheritance
e Design and implementation

Theory and implementation

Parsing and automata

e Theory of formal grammars
e Parser implementation
e Computability theory

Compilers and interpreters

e Implementation technigues
e Register allocation
e Meta-circular interpreters

Com llers

Prlnaples, Techniques,
olds andTools

= e
T P i i

Alfred V. Ahﬁ
Ravi Sethi ‘
Jeftfrey D. Ullman

Why is this
not enough?

Talks about "how"
but not about "what”

Treat design as a
research problem!

What can we study
about programming
systems?

Design
As a research discipline

What is design?

Design is the intentional
solution of a problem, by
the creation of plans for a
new sort of thing, where
the plans would not be
immediately seen, by a
reasonable person, as an
iInadequate solution.

Parsons (2015)

Designerly ways

Sciences study natural world
e By experiment, aiming at truth

Designerly Ways
of Knowing

Humanities study experience
e By analogy, aiming at justice

Design studies the artificial
e By synthesis, aiming at appropriateness

Cultures of programming
Common ways of thinking

Cultures of Programming

Tomas Petricek

August 5, 2024

Different basic
ways of thinking

What is a computer
orogram, how to best
create one”

Five different cultures
of programming!

Unsoundness by design

e [ype checking limitations!
e |T's afeature, not a bug?
e tinyurl.com/nprg0/5-ts

Design questions

e \What research methods to use?
e [s partial soundness a thing”

e [sthere g better design”?

e \What does "better mean?

https://github.com/Microsoft/TypeScript/issues/9825#issuecomment-234115900

Engineering culture e

message.
console. [@] Symbol

e Programs are complex systems

@ codePointAt

e [00Is can help us cope

@ includes
@ indexOf

e Careful balance of trade-offs

& length
@ localeCompare

@ match

Mathematical culture

e Programs as formal entities
e | ke good mathematics...
e Safe, composable, elegant

Humanistic culture

e Augmenting human intellect
e Programming helps us think
e | anguage close to human concepts

Hacker culture

e Programs are fundamentally bits
e DO not restrict the programmer
e Convenience, but full access

Different perspectives

9 Safety is the very essence of types!

A, Useful as long as it makes programming easier
k¥ Sometimes, you need to break the rules

A Does it help programmers think better?

Research methods
Interdisciplinary research

Evaluation Requirements

Performance evaluation and Cl’e ation
User experiments

Case studies Interviews

Expert evaluation Corpus studies

Formalism and proof Natural Programming
Qualitative user studies Rapid Prototyping

Figure 1. A typical design process

Creating designs
Interviews, prototyping,
formalism, analysis, history

Evaluating designs
Qualitative and quantitative
studies, formal proofs

Coblenz et al. (2018)

@ E N

Formal and mathematical
Designing a formal mathematical system

Theoretical and conceptual
Derive design from theoretical principles

Empirical methodologies
Measure and evaluate observable data

User-centric methods
Study users and how they actually work

— (typed) Based on A (5-3)
Syntax Evaluation t—t
t o= terms: ot
X variable 17,1 (E-App1)
Ax:T.t abstraction bt —tt
tt application tr — t
2721 (E-App2)
vite —vi ty
v o= values:
Ax:T.t abstraction value AT - t12) Vo — [x = vz]tiz (E-APPABS)
T == types: el
T type of functions X1 € (T-VAR)
TEHx:T
I = contexts:
%] empty context i r'AX ? = tz_ 'TTZ T (T-ABS)
I[,x:T term variable binding = aBSslileiR & TIN=UE
=ty : Tu—T 't T
=t 11—l -T2 11 (T-App)

't t2: T2

Figure 9-1: Pure simply typed lambda-calculus (A)

Prove properties about
small formal models

"Well-typed programs
do not go wrong'

Discover and avoid
subtle mistakes!

fx | =AVERAGE(DataSheet!A2:02)

=

fx | =AVERAGE(DataSheet!A5:D5)

Rectd «

Width Height

1 15
2 15

1000

1020

15 38
15 68

15 83
15 59

N

15 b2

OOO‘JO\‘U’I#N

O O N R w2

Human-centric
system design

User studies,
guestionnaires,
Interviews, etc.

Qualitative analysis to
design & test ideas

Quantitative analysis to
compare designs

History of

Flle Edlﬁa Tools O0Objects ‘ programming

What interesting past
ideas were |ost?

And the socio-political

Dai u,caz

S — n E -_-E reasons for that?

| weelly Cal3 Monthly Cal Notepad Postlettes

e J| Use history as source

for new design ideas!

Conclusions
What to expect

Preliminary structure

Design - Design and pattern languages

Usability - Human-centric language design
Semantics - Formal models of programming
Types - Types and type safety proofs

Beyond - Unexpected perspectives on types
Paradigms - History and programming systems
Complementary - Learning from past systems
Cognition - How humans think about programming

Jeremy Singer on Notebooks

e Notes on Notebooks: Is Jupyter the
Bringer of Jollity?
e Avallable at;

Nttp//www.dcs.gla.ac.uk/~jsinger/notebooks paf

Why should you read this?

e You'll get more out of the lecture...
e Perfect for the morning tram ride -)
e NOtebooks are curious programming systems!

http://www.dcs.gla.ac.uk/~jsinger/notebooks.pdf

How to do research about
programming language design?

e Inherently interdisciplinary topic
e LOQic, design, user studies, history & morel

Tomas Petricek, 309 (3rd floor)

™ petricek@d3s.mff.cuni.cz

© nitps//tomasp.net | @tomaspetricek

© nittps/d3s.mff.cuni.cz/teaching/nprg07/5

mailto:petricek@d3s.mff.cuni.cz
https://tomasp.net/
http://twitter.com/tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg075

References
Methodology

o Coblenz, M, etal. (2018). Interdisciplinary

orogramming language design. ACM Onward!
e Parsons, G. (2015). The philosophy of design. John Wiley & Sons
e Cross, N. (2007). Designerly ways of knowing. BIRD

Assorted examples

e Marasoiu, M. et al. (2079). Cuscus: An end user
programming tool for data visualisation. Springer
e Pierce, B. C. (2002). Types and programming languages. MIT Press
o Petricek, T, Jakubovic, J. (2027). Complementary science of
Interactive programming systems. HaPoC
o Petricek, T. (2017). Context-aware programming
‘anguages. University of Cambridge

https://dl.acm.org/doi/pdf/10.1145/3276954.3276965
https://dl.acm.org/doi/pdf/10.1145/3276954.3276965
https://www.wiley.com/en-us/The+Philosophy+of+Design-p-9780745663890
https://www.bird-international-research-in-design.org/books
https://link.springer.com/chapter/10.1007/978-3-030-24781-2_8
https://link.springer.com/chapter/10.1007/978-3-030-24781-2_8
https://www.cis.upenn.edu/~bcpierce/tapl/
http://tomasp.net/academic/drafts/complementary
http://tomasp.net/academic/drafts/complementary
https://tomasp.net/coeffects/
https://tomasp.net/coeffects/

