
NPRG075
History and philosophy of programming

Tomáš Petříček, 204 (2nd �oor)
✉  
   | 

Lectures: Tuesday 12:20, S6
  

petricek@d3s.mff.cuni.cz
https://tomasp.net @tomaspetricek

https://d3s.mff.cuni.cz/teaching/nprg075

mailto:petricek@d3s.mff.cuni.cz
https://tomasp.net/
http://twitter.com/tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg075


Philosophy of science
Why does it matter?



Philosophy of science
What can we learn about programming?

  What designers assume and never question
  How to understand odd designs of the past
  What is the nature of programming concepts
  What social forces shape programming



What do
philosophers do?
Origins, languages,
systems, correctness

How could it have
gone differently?

Re�ections on ethics,
politics, development

What if we took one
aspect as primary?



⚙  Methods

Try to explain
how scientists
think and work

Doing philosophy of programming
  Entities

How concepts
evolve & what
are they?

  Social forces

How social
aspects shape
technology



Paradigm shifts
Classic philosophy of science



Scientific revolutions
Periods of normal science
disrupted by revolutions

New era with new
assumptions when the old
ways stop working

New incommensurable
with the old thinking



Philosophy of science
Research programmes (Lakatos)

Groups of scientists share assumptions
Explain failures by blaming
secondary auxiliary assumptions

Against method (Feyerabend)
No single rule explains science
Hard to say what is reasonable!



Case study
Extensible programming languages

Extensibility in programming
language design (Standish, 1975)

 (PDF)tinyurl.com/nprg075-extensible

What is the idea?
Look at page 2 (left column)
Can you make sense of the list?
Are there extensible programming languages today?

https://dl.acm.org/doi/pdf/10.1145/1499949.1500003


Chairman's intro (1969)
The ultimate [objective] is
simple and attractive. A
single universal programming
system [that] includes a base
language & a meta-language.

A program [consists of], sta -
tements in the meta-language
which expand (...) the base
language, [followed by a
program in the
derived language.]



A failed 1960s quest
Universal Language

Respectable disciplines (physics)
have one (mathematics)

From Algol to PL/1
Algol 60 only good for scienti�c use
PL/1 aims to do all, but is too complex!

Extensible languages
Last-ditch attempt for universality?



Programming
language revolution
(Gabriel, 2012)

From thinking about
programming systems

Running, with evolving
state, modi�ed interactively

To thinking about
programming languages

Relationships in static code



Smalltalk language
"Smalltalk is an object-
oriented, dynamically
typed re�ective
programming
language"

What makes it
interesting?



Smalltalk as a
programming
system

Think not about source
code, but about
evolving system state!



Demo
Smalltalk  and 72 78

https://smalltalkzoo.thechm.org/HOPL-St72.html
https://smalltalkzoo.thechm.org/HOPL-St78.html


Smalltalk
Programming system view

  Image-based persistence rather than source
  Application ships with developer tools
  Class browser allows inspecting & editing
  Re�ection lets the system change itself



LISP language
Functional programming language
derived from the lambda calculus?



LISP environment
Time-sharing

Batch processing in the 1950s
TX-0 ('58) allowed interactive use
Multi-user machines via teletype

AI research requirements
Programming with symbolic data
Interactive experimentation
Programs that improve themselves



LISP editor
(Deutsch, 1967)

Interactive program
editing on the terminal

Teletype, not a screen!

Print using: P
Delete child: (3)
Replace child: (2 ..)



Interlisp: Interactive Lisp
PILOT (1966)

Edit code via list transformations
Advising to enhance procedures
Modifying state of a running system

DWIM (1974)
Interactive program correction
Suggests automatic �xes when error occurs
Do What I Mean / Damn Warren's Infernal Machine



Symbolics Lips
Machines (1980s)
Machines optimized
for LISP with LISP-
based environment

Persistent memory
with just cons-cells

Response to new
hardware architecture



Scientific revolutions
Paradigm shifts in programming

  Understand what people really thought!
  The invention of a programming language
  The shift from systems to languages
  Functional programming "research programme"



Entities
Evolution of programming concepts



How mathematical
concepts evolve?
Polyhedra, space, graph,
function, convergence,
measurable set

How does the de�nition
change and why?



Polyhedra
Euler's formula

A polyhedron is a solid
whose surface consists of
polygonal faces?

V − E + F = 2



Counter example?
Convex polygons!
Through any point in space there
will be at least one plane whose
cross-section with the polyhedron
will consist of one single polygon.

Monster-barring
I turn aside with a shudder of horror from this lamentable
plague of functions which have no derivatives.
(Charles Hermite, 1893)



Concepts
Proofs and refutations

  Concept de�nitions are not constant but change
■  Arising from proofs, counter-examples, lemmas
  Monster-barring and exception-barring
  Concept stretching when understanding evolves



Concepts in programming
Change over time!

Data types, logical types
Monads and "railway" metaphor
Processes become abstract

Multiple forces for change
New implementation of the concept
Different metaphor for thinking
New formalization in a proof



Evolution of types
Implementation & formal modality
Data types like records, modelled as sets

Implementation modality evolves
Abstract data types for modularity
Type checking ala lambda calculus

Intuitive modality evolves
Well-typed programs do not go wrong
New type systems based on this

Implementation modality evolves
Types for documentation and editor tooling



Understanding Monads
What are monads

Origins in category theory
Abstraction in functional programming
Used for stateful computations

Writing about monads
Compare how mathematicians and
programmers talk about monads!
tinyurl.com/nprg075-mcat
tinyurl.com/nprg075-mprog

https://ncatlab.org/nlab/show/monad
https://blog.ploeh.dk/2022/04/19/the-list-monad/


Evolution of monads
Formal and intuitive modality
Standard construction in algebraic topology
Monad as a "box" intuition

Implementation modality appears
Used for sequencing effectful computations
De�nition in terms of bind and return

Implementation & intuition evolves
Monads in Haskell and the do notation
Monad as a "sequencing" intuition



Concepts
Programming language design

  There is more to concepts than just a name
  Ideas come from logic, linguistics, biology!
  Beware of concept stretching as with types?
  Capture a new intuition in the design?



Social forces
What shapes programming?



Social history
of computing
How commercial
interests or gender bias
shape computing

Rede�nition of
programming as more
masculine software
engineering in the 1960s



Structured programming



Goto considered harmful (1968)
The quality of programmers is a
decreasing function of the density
of go to statements in the programs
they produce.

Problems with goto
Hard to reason about informally
Hard to reason about formally
Code structure does not match
runtime behaviour



Structured programming
Not obvious at the time!

Everyone used to assembly!
Can the compiler optimize code?
Is it possible to avoid gotos?

Structured Programming Theorem (1966)
Us converts waved this interesting bit of news under the
noses of the unreconstructed assembly-language
programmers who kept trotting forth twisty bits of logic and
saying, 'I betcha can’t structure this.'



Datamation (1973)
What is structured
programming and how
to do it in practice

From engineering
concept to managerial
concept



Chief programmer teams
Top-down management technique

  Structured programming for organizing people
  Chief-programmer leading & dividing code
  Supported by programmers, secretary, backup
  Hostile exchanges between Dijkstra and Mills



Conway's law
Any organization that
designs a system will
produce a design whose
structure is a copy of the
organization's
communication structure.



Social forces
Programming language design

  Language features linked to social structures
  Organizational structure and escape hatches
  Structured, microservices, information hiding
  Origins of languages - COBOL, Fortran, Algol



Conclusions
History and philosophy



History and
philosophy
Learning from the past

Complex reasons why &
how programming ideas
work and do not work



Reading
10 PRINT CHR$(205.5+RND(1));
20 GOTO 10

15: REM Variations in Basic
 (look for the PDF)https://10print.org

Why should you read this?
Fun look at an unexpected bit of
programming history
What can we learn from the past?

https://10print.org/


Conclusions
History and philosophy of programming

Scienti�c paradigms and paradigm shifts
The history of programming concepts
How social forces shape programming

Tomáš Petříček, 204 (2nd �oor)
✉  
   | 
  

petricek@d3s.mff.cuni.cz
https://tomasp.net @tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg075

mailto:petricek@d3s.mff.cuni.cz
https://tomasp.net/
http://twitter.com/tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg075


References (1/2)
Philosophy of science

Kuhn, T. S., (2012). . Chicago
Feyerabend, P. (1975). . Verso
Lakatos, I. (1976). . Cambridge

History & re�ections

De Mol, L., Primiero, G. eds. (2018). 
. Springer

Gabriel, R. (2012). 
. Onward!

Petricek, T. (2022). . Draft
Petricek, T. (2018). 

The Structure of Scienti�c Revolutions
Against Method

Proofs and Refutations

Re�ections on Programming
Systems: Historical and Philosophical Aspects

The Structure of a Programming Language
Revolution

Cultures of Programming
What we talk about when we talk about monads

https://press.uchicago.edu/ucp/books/book/chicago/S/bo13179781.html
https://www.versobooks.com/books/442-against-method
https://www.cambridge.org/core/books/proofs-and-refutations/575FC8A6B4FAB79E649EDF5FBB9C6E10
https://link.springer.com/book/10.1007/978-3-319-97226-8
https://link.springer.com/book/10.1007/978-3-319-97226-8
https://dreamsongs.com/Files/Incommensurability.pdf
https://dreamsongs.com/Files/Incommensurability.pdf
http://tomasp.net/academic/drafts/cultures/draft-2022.pdf
http://tomasp.net/academic/papers/monads/


References (2/2)
Historical materials

Teitelman, W. (1966). 
. MIT

Teitelman, W. (1974). . Xerox PARC
Deutsch, P. (1967). . Berkeley
Dijkstra, E. (1968). . ACM
McCracken et al. (1973). . Datamation 12

PILOT: A Step Toward Man-Computer
Symbiosis

Interlisp Reference Manual
Preliminary Guide to the LISP Editor

Go To Statement Considered Harmful
Revolution in Programming

http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-032.pdf
http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-032.pdf
https://www.softwarepreservation.org/projects/LISP/interlisp/Interlisp-Oct_1974.pdf
https://www.softwarepreservation.org/projects/LISP/bbnlisp/W-21_LISP_Editor_Apr67.pdf
https://homepages.cwi.nl/~storm/teaching/reader/Dijkstra68.pdf
https://archive.org/details/bitsavers_datamation_34111538



