History and philosophy of programming

Tomas Petricek, 204 (2nd floor)
™ petricek@d3s.mff.cunicz
© nitps//tomasp.net | @tomaspetricek

Lectures: Tuesday 12:20, S6
© nittps/d3s.mff.cuni.cz/teaching/nprg07/5

mailto:petricek@d3s.mff.cuni.cz
https://tomasp.net/
http://twitter.com/tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg075

Philosophy of science
Why does it matter?

What can we learn about programming?

® What designers assume and never question
Q. How to understand odd designs of the past
IX What is the nature of programmming concepts
£ What social forces shape programming

X "Eu

{ ‘\J i
Philosophical Studies Senes‘% ! F iy
17] =l

Liesbeth De Mol - Giuseppe Primiero
Editors

Reflections on
Programming

Systems

Historical and Philosophical Aspects

@ Springer

Origins, languages,
systems, correctness

How could it have
gone differently?

Reflections on ethics,
politics, development

What if we took one
aspect as primary”

8 Methods 88 Entities

Try to explain How concepts
now scientists evolve & what
think and work are they”

Proofs and

Refutations

B Social forces

How social
aspects shape
technology

RECODING
GENDER

Paradigm shifts
Classic philosophy of science

The Structure of :

Scientific Revolutions Periods of normal science

Second Edition, Enlarged

Thomas S. Kuhn disrupted by revolutions

New erg with new
assumptions when the olo
ways stop working

New incommensurable
with the old thinking

_“/ “Alandmark in intellectual history.”
—Science

Philosophy of science

Research programmes (Lakatos)

e Groups of scientists share assumptions
e Explain failures by blaming
secondary auxiliary assumptions

Against method (Feyerabend)

e NO single rule explains science
e Hard to say what is reasonable!

Extensible programming languages

e Extensibility in programming
language design (Standish, 1975)
e tinyurl.com/nprgQ75-extensible (PDF)

What is the idea?

e L 0ook at page 2 (left column)
e Canyou make sense of the list?
e Are there extensible programming languages today?

https://dl.acm.org/doi/pdf/10.1145/1499949.1500003

An informal monthly publi-
cation of the Special Interest
Group on Programming Languages
(SIGPLAN) of the Association

for Computing Machinery (ACM),
incorporating the PL/I Bulletin,
the Snobol Bulletin, the Algol
Bulletin, the LISP Bulletin, and
the Fortran Information Bulletin
as occasional supplements.

Current SIGPLAN officers
are: the Chairman, Prof. Peter
Wegner, Division of Applied
Mathematics, Brown University,
Providence, Rhode Island 02912,
telephone 401/863 2115;
the Vice-Chairman, Dr. Thomas
A. Standish, Aiken Computation
Laboratory, Harvard University,
33 Oxford Street, Cambridge,
Massachusetts 02138; and the
Secretary-Treasurer, Miss Caral
A. Sampson, Applied Data Re-
search, Inc., 2425 Wilson Blvd.,
Arlington, Virginia, telephone
703/528-3141.

SIGPLAN Notices is edited
by Christopher J. Shaw, System
Development Corporatiom, 2500
Colorado Avenue, Santa Monica,
California 90406, telephone
213/393-9411.

SIGPLAN membership appli-
cations are available from any
of the officers or from national
headquarters: ACM SIGPLAN, 1133
Avenue of the Americas, New York,
N.Y. 10036, telephone 212/265-
6300, CHANGES OF ADDRESS AND
OTHER MATTERS PERTAINING TO
THE SIGPLAN MAILING LIST SHOULD
BE SENT TO NATIONAL HEADQUARTERS.
Copies of SIGPLAN Notices Special
issue "Proceedings of the Exten-
sible Languages Symposium' are
available from ACM at the above
address: Price $4.00 prepaid.

SIGPLAN Notices

Vol. 4, No. 8, 1969 August

SPECIAL INTEREST GROUP ON PROGRAMMING LANGUAGES

PROCEEDINGS OF THE

Extensible Languages
Symposium

edited by
Carlos Christensen and Christopher J. Shaw

sponsored by SIGPLAN
Boston, Massachusetts, 1969 May 13

Symposium Chairman: Carlos Christensen, ADR/Com-
puter Associates

Arrangements Chairman: Helen M. Willett, Willett
Associates

Treasurer: Peter C. Waal, ADR/Computer Associates

Program Committee: Carlos Christensen (Chairman)
Norman Glick, Department of Defense
Maxim G. Smith, RCA Information Systems Div.
Peter Wegner, Cornell University

TABLE OF CONTENTS

Chairman's Introduction
Editors' Note
-5 Alan J. Perlis. Introduction to Extensible
Languages
SEVEN EXTENSIBLE LANGUAGES
6-8 Jan V. Garwick GPL
9-13 B.J. Mailloux and J.E.L. Peck Algol 68

[CENEN

1417 Jorrand Basel
18,19 E.T. Irons Imp
20-26 Thomas A. Standish PPL
27-31 James Bell Proteus
32-36 M, Donald Maclaren EPS

3739 Panel of Language Authors

40-b4l John Nicholls. PL/I Compile Time Extensib-
ility

TWO VIEWS OF EXTENSIBLE LANGUAGES

45-49 T.E. Cheatham, Jr. Motivation for Extensible
Languages (Discussion)

50-52 M,D. McIlroy. Alternatives to Extensible
Languages (Discussion)

53,54 Panel on the Concept of Extensibility

5562 Thomas A. Standish. Some Compiler-Compiler
Techniques for Use in Extensible
Languages (Supplement)

The ultimate |objective] is
simple and attractive. A
single universal programming
system [that] includes a base
language & a meta-language.

A program |consists of}, sta-
ements in the meta-language
which expand (...) the base
language, |followed by a
program in the

derived language.

A failed 1960s quest

Universal Language | PROGRAMMING
e Respectable disciplines (physics) PGUATES

History and

: el
have one (mathematics) et g

From Algol to PL/T

e Algol 60 only good for scientific use
e PL/T aims to doall, but is too complex!

Extensible languages
o | gst-ditch attempt for universality?

The Structure of a Programming

“I don’t want to die in a language
I can’t understand.”
~ Jorge Luis Borges

Abstract

Engineering often precedes science. Incommensurability is real.
Categories and Subject Descriptors A.0 [General]

General Terms Design

Keywords Engineering, science, paradigms, incommensu-
rability

[

In 1990, two young and very smart computer sci-

entists—Gilad Brachaand William Cook—wrote

a pivotal paper called “Mixin-based Inheritance”

[1], whichimmediately laid claim tobeing the first

scientific paper on mixins. In that paper they described look-

ing at Beta, Smalltalk, Flavors, and CLOS, and discovering a

mechanism that could account for the three different sorts

of inheritance found in these languages—including mixins

from Flavors and CLOS. They named their new mechanism
“mixins.”

My attention was directed to this paper by Gilad Bracha
himself when he told me in Brazil at AOSD in the spring of
2011 that most Lisp people who read the paper had strong
objections to what he and William Cook had written about
Lisp and CLOS.

That night I pulled the paper down from the ACM server
and read it while outside enormous puffed clouds dwelled
overhead, lit from beneath by the town of Porto de Galinhas
on the Brazilian coast; the smells of burning sugarcane and
bitter ocean pushed into my room.

Permission to make digital or hard copies ofall or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
Onward! 2012, October 19-26, 2012, Tucson, Arizona, USA.
Copyright © 2012 ACM 978-1-4503-1562-3/12/10....$15.00.

woaf

Richard P. Gabriel Language
IBM Research
Redwood City, CaliforniaUsA Revolution
us.ibm.com
dreamsongs.com

Abstract

Engineering, A Path To Science

Engineers build things; scientists describe reality; philoso-
phers get lost in broad daylight.

What I read in Brazil reminded me of my quest to dem-
onstrate thatin the pursuit of knowledge, at least in software
and programming languages, engineering typically precedes
science—that is, even if science ultimately produces the most
reliable facts, the process often begins with engineering.

Thbelieve it’s a common belief that engineers only follow
paths laid down by scientists, adding creativity and practi-
cal problem solving. Philip Kitcher, a philosopher of science
at Columbia University, in an essay for the New York Times

Gabriel 20172

-rom thinking about
Drogramming systems

Running, with evolving
state, modified interactive

To thinking about
rogramming languages

elationships in static code

W Smalltalk - Wikipedia

WIKIPEDIA

‘The Free Encyclopedia

Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate

Contribute

Help

Learn to edit
Community portal
Recent changes
Upload file

Tools

What links here
Related changes
Special pages
Permanent link
Page information
Cite this page
Wikidata item

Print/export

Download as PDF
Printable version

In other projects

x |+

O B htps:

‘en wikipedia.org/wiki/Smalltalk

Article Talk Read Edit

Smalltalk

From Wikipedia, the free encyclopedia

Syntax [edit]

The adage that "Smalltalk syntax fits on a postcard" refers to a code snippet by Ralph
Johnson, demonstrating all the basic standard syntactic elements of methods:128112°]

exampleWithNumber: x

Iyl

true & false not & (nil isNil) ifFalse: [self halt].
y := self size + super size.

#(%$a #a 'a’ 1 1.0)

do: [:each |
Transcript show: (each class name);
show: ' '].
X<y

Literals [edit]

The following examples illustrate the most common objects which can be written as
literal values in Smalltalk-80 methods.

Numbers. The following list illustrates some of the possibilities.

42

-42

123.45
1.2345e2
2r10010010
16rA000

8

View history

Paradigm
Designed by

Developer

First appeared

Stable release

Adeie Gadberg and David Robson

w @ »

Search Wikipedia

Smalltalk

SMALLTALK:

THE LANGUAGE AND ITS IMPLEVENTATION

Object-oriented

Alan Kay, Dan Ingalls,
Adele Goldberg

Alan Kay, Dan Ingalls,
Adele Goldberg, Ted
Kaehler, Diana Merry,
Scott Wallace, Peter
Deutsch and Xerox PARC
1972; 50 years ago
(development began in
1969)

Smalltalk-80 version 2 /
1980; 42 years ago

‘Smalltalk is an object-
oriented, dynamically
typed reflective
programming
language’

What makes it
Interesting?

Systemor 1ZAt0mn
'Kemel CL?u&;nes'

'Graphical Objects'
! TWN' Cb jecl:s)

XEROX eaming Researc

UsEr screengxtent: 6400808 tab: 0®0. :

PECT W LT Tiom
NotifyWindow ‘Scheduler!
PanedWindow 'Ed.i.l:tng'

'Image
'Strike formar

MG dispaged o
DISY MARY £ plizl i)

fa :
at: (OriginCun
[user waith
FE(0 CIAME 3 TEW

yourfone < Font
max: 177 as|

Underlined
—underlined inzic—{fmdetimad

Creamio Creamiz

TimesRomand TimesRomani0 TimesRoman12
Helvetica18

Gachald

Hippo10 = oLBESEG Y NLSKSUPOTEPT TVOX Yy

Mathio —Flat+Az={H 2237, Q@00AOPOS LA SI<E2E

o VY ECTIFCECID D6 F « SRELUVEX M LK

| 20326 HMNLII—ok @ M DN

Smalltalk as a
programming
system

Think not about source

code, but about
evolving system state!

Smalltalk /2 and /8

Welcome to SMALLTALK [May 37
to square length
(& lengthe:.
do 4 (&) go length turn 98))1
square
do 72 (&) turn 5 square 100!

https://smalltalkzoo.thechm.org/HOPL-St72.html
https://smalltalkzoo.thechm.org/HOPL-St78.html

Programming system view

B Image-based persistence rather than source
Application ships with developer tools
M Class browser allows inspecting & editing

= Reflection lets the system change itself

LISP language

—unctional programming language
derived from the lambda calculus?

LISP 15 QVER HALF A | | T WONDER IF THECYCLES THEH; ARE YOUR
CENTURYOLD AND 1T | [WILL CONTINUE FOREVER. FATHER'S PARENTHESES

STILL HAS THIS PERFECT | [~ —| | 253

TIMELESS AIRABUTIT.

A FEW CODERS FROMEACH
NEW GENERATION RE-
DISCOVERING THE LISP ARTS.

FOR A MORE... CIVILZED AGE.

Time-sharing

e Batch processing in the 1950s
o [X-0(58)allowed interactive use

e Multi-user machines via teletype

Al research requirements
L
L

Programming with symbolic data
nteractive experimentation

Programs that improve themselves

*EDITF (APPEND)

EDIT
*(P 4 109) |

(LAMBDA (X) Y (COND ((NUL X) Z) (T (CONS (CAR) (APFEND (CIR X ¥))))))
*(3)
*(2 (X Y))

*P
(LAMBDA (X Y) (COND & %))

(Deutsch, 1967)

Interactive program
editing on the terminal

Teletype, not a screen!

Crint using: P
Delete child: (3)
Replace child: (2 ..)

PILOT (1966)

e Edit code via list transformations
e Advising to enhance procedures
e Modifying state of a running system

DWIM (1974)

e [nteractive program correction
e Suggests automatic fixes when error occurs
e Do What | Mean / Damn Warren's Infernal Machine

®

Symbolics Lips
Machines (1980s)

Machines optimized
for LISP with LISP-
based environment

Persistent memory
with just cons-cells

Response to new
hardware architecture

Paradigm shifts in programming

40 Understand what people really thought!
2 The invention of a programming language
L2l The shift from systems to languages

d®» ~unctional programming "research prograrmme”

Cvolution of programming concepts

Proofs and
Refutations

Imre Lakatos

How mathematical
concepts evolve?

Polyhedra, space, graph,
function, convergence,
measurable set

How does the definition
change and why?

Fuler's formula
V-E+F=2

A polyhedron is a solid
whose surtface consists of
polygonal faces?

Convex polygons!

Through any point in space there
will be at least one plane whose
cross-section with the polyhedron
will consist of one single polygon.

Monster-barring

(Charles Hermite, 1893)

V_E+F=2
8-12+6=2

V_E+F=0
16 —32 +16 =0

turn aside with a shudder of horror from this lamentable
Dlague of functions which have no derivatives.

Proofs and refutations

X Concept definitions are not constant but change

Arising from proofs, counter-examples, lemmas

a8 Monster-barring and exception-barring
I Concept stretching when understanding evolves

Concepts in programming

Change over time!

e Data types, logical types
e Monads and raillway’ metaphor
e Processes become abstract

Multiple forces for change

e New iImplementation of the concept
e Different metaphor for thinking
e New formalization in a proof

Evolution of types

Implementation & formal modality
Data types like records, modelled as sets Types and

Programming

Implementation modality evolves Languages

Abstract data types for modularity
Type checking ala lambda calculus

Intuitive modality evolves

Well-typed programs do not go wrong
New type systems based on this

Implementation modality evolves
Types for documentation and editor tooling

What are monads

e Qrigins in category theory
e Abstraction in functional programming
e Used for stateful computations

Writing about monads

e Compare how mathematicians and
orogrammers talk about monads!

e tinyurl.com/nprg0/5-mcat

o tinyurl.com/nprg0/5-mprog

https://ncatlab.org/nlab/show/monad
https://blog.ploeh.dk/2022/04/19/the-list-monad/

Formal and intuitive modality

Standard construction in algebraic topology
Monad as a 'box’ intuition

Implementation modality appears

Used for sequencing effectful computations
Definition in terms of bind and return

Implementation & intuition evolves

Monads in Haskell and the do notation
Monad as a 'sequencing intuition

Programming language design

= Thereis more to concepts than just a name
R |deas come from logic, linguistics, biology
® Beware of concept stretching as with types?
E.. Capture a new intuition in the design?

Social forces
What shapes programming?

Books Journals

PROGRAMMED
INEQUALITY

How Britain Discarded Women
Technologists and Lost Its Edge in
Computing

by Mar Hicks

1SBN: 9780262535182
Publisher: The MIT Press
PubDate: February 23,2018

This “sobering tale of the real
consequences of gender bias'
explores how Britainlostits early
dominance in computing by
systematically discriminating
againstits most qualified workers:
women. (Harvard Magazine)

Open Access Resources

IBM

The Rise and Fall

and Reinvention

of a Global Icon

3ames W. Cortada

Give About ContactUs

RECODING
GENDER

. We s Cl
of aGloballcon Computing
by James W. Cortada by Janet Abbate

ISBN: 9780262039444
Publisher: The MIT Press
Pub Date:March5,2019

Ahistory of one of the most
influential

ISBN: 9780262534536
Publisher: The MIT Press
Pub Date: September 8, 2017

The untold history of women and

thelast century.

succeeded inafield shaped by
gender biases.

Making and Remaking the Modern
Computer

by Thomas Haigh, Mark Priestiey
and Crispin Rope

1SBN: 9780262535175
Publisher: The MIT Press
PubDate: January 26,2018

The history of the first

Making IT Work

A Histoy f the Computr Serices Industry

AHistory of the Computer
Services Industry

by Jeffrey R. Yost

ISBN: 9780262036726
Publisher: The MIT Press

Pub Date: October 6, 2017

‘The evolution of the multi-billion-
dollar computer servicesindustry,

Christopher Tozzi

Jonathan Zitrain

<a_history>

<of_the>
free_and_
open
softuare_

<revolution>

)

A History of the Free and Open
Source Software Revolution

by Christopher Tozzi
Foreword by Jonathan L. Zittrain

ISBN: 9780262036474
Publisher: The MIT Press
Pub Date: August 11,2017

Thef d

todat: Joud

andusetoits afterlife as a part of
computing folklore.

computing, with case studies of
important companies.

movement, fromits origins in hacker
culture, through the development of
GNUand Linux, toits commercial
use today.

Social history
of computing

How commercial
Interests or gender bias
shape computing

Redefinition of
orogramming as more
masculine software
engineering in the 1960s

Structured programming

T COULD RESTRUCTURE | | EH, SCREW GQOD PRACTICE.
THE PROGRAMS FLOW | | HOW BAD CAN 1T BE?

CR ljSE ONE LITTLE goto main._sub3;
GOTO' INSTEAD. W

\
?}ﬂ j : ‘? *COMPILE*

Goto considered harmful (1968)

The quality of programmersis a
decreasing function of the density
of go to statements in the programs
they produce.

Problems with goto

e Hard to reason about informally

e Hard to reason about formally

e Code structure does not match
runtime behaviour

Edgar Dijkstra: Go To Statement Considered Harmful

Go To Statement Con:

Key Words and Phrases: go to statement, jump unlmnuon
branch instruction, conditional clause, alternative clau
itive clause, program intelligibility, program sequenumg

CR Categories: 4.2, 5.23, 5.24

Epiror:

For a number of years I have been familiar with the observation
that the quality of programmers is o decrcasing funetion of the
density of go to statements in nu.v progiams they produce. bore
recently T discovered why the the go to statement has such
Gasstrous ofecs, aad 1 becume sonvinced that the g0 to state-
meat should be abolished from all “higher level” programming
languages (i.c. everything escept, perhaps, plain machine code)
At'that time [did not attach too much importance to this dis-
covery; L now submit my considerations for publication becanse
in very recont discussions in which the subject turned up, I have
been urged to do so.

My first remark is that, ulthough the pmzmmluu's activity
ends when he hus constructed a correct program,
taking place nndor contrd] o bs progracy 13- ehe" teus Subjoct
matter of his activity, for it is this process that has Lo accomplish
the desired effect; it is this process that in its dynamic behavior
has to satisfy the desired specifications. Yet, ouce the program has
been made, the “making” of the corresponding process is dele-
gated to the muchine.

My second remark is that our intellectunl powers are rather
geared to muster static relations and that our powers to visualize
Processes evolving in time are relatively poorly developed. For
that reason we should do (a3 wise programmers aware of our
limitations) our utmost to shorten the conceptual gap between
the static program and the dynamic process, to make the cor-
respondence between the program (epread ot in text space) and
the process (spread out in time) as trivial as possible

o o comsidar hw wi e shosaclene thE progress of &
process. (You may think about ¢
manner: suppose. that, a process, considered as a time succession
of actions, s stopped after an arbitrary action, what data do we
have {0 fix in order that we can redo the process uncil the very
same point?) If the program text is a pure coneatenation of, suy,
sssignment statements (for the purpose of this discussion regarded

38 the descriptions of single uctions) it is sufficient to point in the

Program text to a point between two successive action descrip-

tions. (In the absence of go to stalements I can permit myself the

et mnmguny in tho lust three words of the previous sen-

e them as “succossive (snnon descriptions)” we

an succasive fn toxt space; if we parse as “(successive action)

dﬂﬂrlphuns" we mean successive in ume) Let us call such
pointer to a suitable place in the text a “textual index.”

When we include oonditional clauses (if B then 4), slternative
clauses (if B then Al else 42), choice clanses es introduced by
C. A R. Hoare (caseli] of (41, 42, -+, 4n)), or cand.lualml expres-
sions as introduced by 4. MeGarehy (FL s B1, 2
Bn — En), the fact remains that the progress of e p process re-
maing characterized by a single textual index.

As soon as we include in our language procedures we must admit
that a single textusl index is no longer sufficient. In the case that
® textual index points to the interior of a procedure body the

lered Harmful

Volume 11 / Number 3 / March, 1968

Edgar Dijkstra: Go To Statement Considered Harmful

dynamic progress is only characterized when we also give to which
call of the procedure wo refer. With the inclusion of procedures
we can charsoterize the progress of the process via a sequence of
textual indices, the length of this sequence being equal to the
dynamic depth of procedure calling.

Let us now consider repetition eluuses (like, while B repeat A
or repeat 4 until B). Logically speaking, such clauses arc now
superfluous, because wo ¢an express repetition with the aid of
recursive procedures. For reasous of realism I don’t wish Lo ex-
clude them: on the one hand, repetition clauses ean be implo-
mented quite comfortsbly with present day finite equipment; on
the other hand, tho ressoning pattern known as “induction”
makes us well equipped (o retain our intellectual grasp on the
Processes generated by repetition cluuses. With the inclusion of
the repetition clauses textual indices are no longer suficient to
describe the dynimic progresa of the process. With each entry into
4 repetition clause, however, we can associate a so-called “dy-
namic index,” inexorably cn\mt.mg the ordinal number of the
corresponding cureent. 1 s repetition clauses (just as
procedure calls). may be ap estedly, we find that now the
progeessof tho process an Anays be waiquely characterized by a
(mixed) sequence of textual snd/or dynsmic indices.

The main point is that the values of these indices are outside
programmer’s control; they sre generated (either by the write-up
of his program or by the dynamic evolution of the process) whether
he wishes or not. They provide independent coordinates in which
to describe the progress of the process.

hy do we need such independent coordinates? The resson
is—and this seems to be inherent to sequential processes—that
we can interprot the value of o variable only with respect to the
progress of the process. If we wish to count the number, 7 say, of
people in an initially empty room, we can achieve this by increas-
ing n by one whenever we see someoné entering the room. In the
in-between moment that we have observed someone entering the
room but have not yet performed the subsequent incresse of .,
its value equals the number of people in the room minus one!

The unbridled uso of the go to statement has an immediate
consequence that it becomes terribly hard 1o find 4 meaningful set
of coordinates in which to describe the process progress. Usually,
people take into account as well the values of some well chosen
variables, but this is out of the question because it is relative to
the progress that the meaning of these values is to be understood!
With the go to statement,one can, of course, atill deseribe the
progress uniquely by a counter counting the number of actions
performed since program start, (viz. & kind of normalized clock).
The difficulty is that such coordinate, although unique, is utterly
unhelpll. In such » oordinate ayatom it basomes an extromely

plicated affair to define all those points of progress where,
2oy, ectual the mumbor of persons i vhe room minus onet

The go to statement as it stands is just Loo primitive; it is too
much an invitation to make o mess of one’s program. One can
regard aud appreciate tho clauses considered as bridling its use. I
donot claim that the clauses mentioned are exhaustive in the sense
that they will satisfy all needs, but whatever clauses are suggested
(e.g- abortion clauses) they should satisfy the requirement that &
programmer independeat eoordinate system can be maintained to
desoribe the process in a helpful and manageable way.

Tt is hard to ond this with a fair acknowlodgment. Am I to

Communieations of the ACM 147

Not obvious at the time!

e Cveryone used to assembly!
e Can the compiler optimize code? | s I2: peinaley

e [S it possible to avoid gotos?

Structured Programming Theorem (1966)

Js converts waved this interesting bit of news under the
noses of the unreconstructed assembly-language

orogrammers who kept trotting forth twisty bits of logic and
saying, | betcha can't structure this.

DAETAMATIGN.

DECEMBER, 1973
volume 19 number 12
This issue 137,600 copies

revolution in programming

According to guest editor McCracken, structured programming is a major intellectual
invention that will revolutionize the- way programs are produced. Our articles on this
subject approach the issue in several ways. Before reading them, be sure to read the over-
view.

50 Revolution in Programming: An Overview
DANIEL D. MC CRACKEN

52 Structured Programming 55 Structured Programming: Top-down Approach
JAMES R. DONALDSON EDWARD F. MILLER, JR. and GEORGE E. LINDAMOOD

62 A Linguistic Contribution to GOTO-less
Programming
R. LAWRENCE CLARK

58 Chief Programmer Teams
F. TERRY BAKER and HARLAN D. MILLS

What is structured
programming and how
to do it in practice

-rom engineering
concept to managerial
concept

Top-down management technigue

d®» Structured programming for organizing people
9 Chief-programmer leading & dividing code

é8s Supported by programmers, secretary, backup
@) Hostile exchanges between Dijkstra and Mills

AMA ZonN

Any organization that
designs a system will
produce a design whose
structure is a copy of the
organization's
communication structure.

Programming language design

@ Language features linked to social structures
S Organizational structure and escape hatches
am Structured, microservices, information hiding
@. Origins of languages - COBOL, Fortran, Algol

Conclusions
History and philosophy

Evaluation Requirements
Performance evaluation and Creation
User experiments

Case studies Interviews

Expert evaluation Corpus studies
Formalism and proof

Qualitative user studies

Natural Programming
Rapid Prototyping

Figure 1. A typical design process

Learning from the past

Complex reasons why &
now programming ideas
work and do not work

10 PRINT CHRS(205.5+RND(1));
20 GOTO 10

e 15 REM Variations in Basic
e Nttpsy//10print.org (look for the PDF)

Why should you read this?

e Fun look at an unexpected bit of
programming history

e \What can we learn from the past?

https://10print.org/

History and philosophy of programming

e Scientific paradigms and paradigm shifts
e [Nhe history of programming concepts
e How social forces shape programming

Tomas Petricek, 204 (2nd floor)

™ petricek@d3s.mff.cuni.cz

© nitps//tomasp.net | @tomaspetricek

© nittps/d3s.mff.cuni.cz/teaching/nprg07/5

mailto:petricek@d3s.mff.cuni.cz
https://tomasp.net/
http://twitter.com/tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg075

References (1/2)

Philosophy of science

e Kuhn, T. S, (2012). The Structure of Scientific Revolutions. Chicago
e Feyerabend, P (1975). Against Method. Verso
e Lakatos, I. (1976). Proofs and Refutations. Cambridge

History & reflections

e De Mol, L., Primiero, G. eds. (2018). Reflections on Programming
Systems: Historical and Philosophical Aspects. Springer

o Gabriel, R. (2012). The Structure of a Programming Language
Revolution. Onward!

o Petricek, T. (2022). Cultures of Programming. Draft

o Petricek, T. (2018). What we talk about when we talk about monads

https://press.uchicago.edu/ucp/books/book/chicago/S/bo13179781.html
https://www.versobooks.com/books/442-against-method
https://www.cambridge.org/core/books/proofs-and-refutations/575FC8A6B4FAB79E649EDF5FBB9C6E10
https://link.springer.com/book/10.1007/978-3-319-97226-8
https://link.springer.com/book/10.1007/978-3-319-97226-8
https://dreamsongs.com/Files/Incommensurability.pdf
https://dreamsongs.com/Files/Incommensurability.pdf
http://tomasp.net/academic/drafts/cultures/draft-2022.pdf
http://tomasp.net/academic/papers/monads/

References (2/2)

Historical materials

o Teitelman, W. (1966). PILOT: A Step Toward Man-Computer
Symbiosis. MIT

Teitelman, W. (1974). Interlisp Reference Manual. Xerox PARC
Deutsch, P (1967). Preliminary Guide to the LISP Editor. Berkeley
Dijkstra, E. (1968). Go To Statement Considered Harmful. ACM
McCracken et al. (1973). Revolution in Programming. Datamation 12

http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-032.pdf
http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-032.pdf
https://www.softwarepreservation.org/projects/LISP/interlisp/Interlisp-Oct_1974.pdf
https://www.softwarepreservation.org/projects/LISP/bbnlisp/W-21_LISP_Editor_Apr67.pdf
https://homepages.cwi.nl/~storm/teaching/reader/Dijkstra68.pdf
https://archive.org/details/bitsavers_datamation_34111538

