
NPRG075
Formal models of programming

Tomáš Petříček, 204 (2nd floor)

 |

Lectures: Tuesday 12:20, S6


petricek@d3s.mff.cuni.cz
https://tomasp.net @tomaspetricek

https://d3s.mff.cuni.cz/teaching/nprg075

mailto:petricek@d3s.mff.cuni.cz
https://tomasp.net/
http://twitter.com/tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg075

History
Programming as mathematics

Programming in
the late 1940s
ENIAC programmed by
plugging wires and
flipping switches

"The ENIAC was a son-
of-a-bitch to program" -
Jean (Jennings) Bartik

Mathematical science of computation
John McCarthy (1962)
In a mathematical science, it is possible
to deduce from the basic assumptions,
the important properties of the entities
treated by the science.

What we want to answer
Does transformation preserve meaning?
Does translation procedure correctly translate?
Do two programs compute the same function?

Microalgol (1964)
Syntax and semantics
of trivial Algol subset

 gives the
final state of a program

 run in a state

"Description of the
state of an Algol
computation will clarify
(..) compiler design"

micro(π, ξ)

π ξ

Formal models
What are they good for?

 Make sense of tricky language features
 Prove properties of specific programs
 Prove properties of the language
 Make sure type system actually prevents bugs!

The definition of
Standard ML (1990s)
Operational semantics
and type system for a
complete language

Even language this simple
had murky parts!

// Function: 'a -> 'a list
let callLogger =
 // List: 'a list
 let mutable log = []
 fun x ->
 log <- x :: log
 log

// Can we call this with:
callLogger 10
callLogger "hi"

Generalization and
value restriction
ML makes top-level
definitions polymorphic

Allowing that for
values is unsound!

Soundness
Surely, we know better?

Are such problems in programming
languages used today?
tinyurl.com/nprg075-unsound

Unexpected interactions!
Many Java extensions formalized
Formalizations with soundness proofs!
This is interaction between multiple features...

https://io.livecode.ch/learn/namin/unsound

Semantics
Formal language definitions

Language semantics types
 Axiomatic semantics

Define rules satisfied by individual commands
 Denotational semantics

Assign mathematical entity to each program
 Big-step operational semantics

Describe how terms reduce to values
 Small-step operational semantics

Evaluation as gradual rewriting of terms

Language semantics types

Language semantics types

Why small-step?
Easier to write than
axiomatic or denotational

But harder to use for
program equivalence

Good textbook and
popular in PL research
community

Works for programs that
do not terminate

Semantics
Definition of an ML subset

Demo
Functions and numbers in F#

Expressions and evaluation

Evaluation rules

Functions and numbers

Functions and currying

Simplifying the rules

Conditionals and stuck state

Adding references

What did we learn?
Interesting aspects

Evaluation order of sub-expressions
Laziness of conditional expressions
What needs to be in the state

Interesting things left out
Data structures: records, unions, lists
Language features: recursion, exceptions
Hard things: Concurrency, input and output

ReactiveX
Programming with observables

Functional reactive programming
Classic functional style

Functional reactive animations (1990s)
Composing behaviours and events
Revised in the Elm programming style

Observables and events
Events that occur and produce values
Mouse moves, server notifications, user inputs, ...
Transformed using a range of operators

Functional reactive programming
Reactive animations (Elliott, 1997)

followMouseAndDelay u =
 follow `over` later 1 follow
 where
 follow = move (mouseMotion u) jake

How does it work
mouseMotion represents current mouse position
later delays time by X seconds
over overlays multiple animations

Reactive eXtensions
Events represented by
Observable<T>

Produces values when
something happen

Operators turn one or more
observables into a new one

Demo
Programming with RxJS

Semantics
Formalizing observables

Minimal language with events

Demo
Lists and sequencing in F#

Modelling concurrency

Triggering events

Lists, sequencing and steps

Rules for event handlers

Events calculus
Focus on what matters

Lists, numbers and events only
No functions or recursion!
Probably still Turing-complete

What did we learn
Sequence of concurrent expressions
Selection of expression to be run
Scheduling when event is triggered

Alternative rules

Conclusions
Formal models

Formal models
Useful design guide and
for making formal claims

Explains core ideas of a
system in a succinct way

The danger is producing
languages that look
well on paper!

Language semantics types
 Lambda calculus

Logic (1930s) but used for PL semantics (1960s+)
 Pi calculus, CCS and CSP

Models of concurrent systems (1980s-90s)
 Join calculus

Distributed asynchronous programming (1990s)
 Programming language theory

Memory regions, effects and coeffects, locks, etc.

Reading
Null safety in Dart

Avoiding null dereferencing with types
Available at: https://dart.dev/null-
safety/understanding-null-safety

Why read this
Simple useful type system feature!
Good discussion on soundness
More languages have this: Swift, Rust, C#, TypeScript

https://dart.dev/null-safety/understanding-null-safety
https://dart.dev/null-safety/understanding-null-safety

Conclusions
Formal models of programming

Programming language theory, Part I
Evaluation over syntactic structures
Better for small and stateless systems

Tomáš Petříček, 204 (2nd floor)

 |


petricek@d3s.mff.cuni.cz
https://tomasp.net @tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg075

mailto:petricek@d3s.mff.cuni.cz
https://tomasp.net/
http://twitter.com/tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg075

References (1/2)
Semantics

Krishnaswami, N. (2021).
Pierce, B. (2002). . MIT
Pierce, B (ed.) (2004).

. MIT

History

Chruch, A. (1941). . Princeton
McCarthy, J. (1964).
McCarthy, J. (1963).

Milner, R. et al. (1997). . MIT

Semantics of Programming Languages
Types and Programming Languages

Advanced Topics in Types and Programming
Languages

The Calculi Of Lambda Conversion
A Formal Description of a Subset of ALGOL
Towards a Mathematical Science of

Computation
The Definition of Standard ML

https://www.cl.cam.ac.uk/teaching/2021/Semantics/notes.pdf
https://mitpress.mit.edu/9780262162098/types-and-programming-languages/
https://www.cis.upenn.edu/~bcpierce/attapl/
https://www.cis.upenn.edu/~bcpierce/attapl/
https://archive.org/details/AnnalsOfMathematicalStudies6ChurchAlonzoTheCalculiOfLambdaConversionPrincetonUniversityPress1941
https://apps.dtic.mil/sti/pdfs/AD0785050.pdf
http://jmc.stanford.edu/articles/towards/towards.pdf
http://jmc.stanford.edu/articles/towards/towards.pdf
https://direct.mit.edu/books/book/2094/The-Definition-of-Standard-ML

References (2/2)
Reactive

Elliott, C. (1998). . MSR
. Online

Wan, Z., Hudak, P. (2000).
, PLDI

Calculi

Landing, P. J. (1966). . ACM
Milner, R. (1986). . LFCS
Hoare, C.A.R. (1978). . ACM
Milner, R. (1999).

. Cambridge
Fournet, C., Gonthier, G. (1996).

. POPL

Composing Reactive Animations
RxJS Primer - Learn RxJS

Functional reactive programming from
first principles

The Next 700 Programming Languages
A Calculus of Communicating Systems

Communicating Sequential Processes
Communicating and mobile systems: The Pi

calculus
The reflexive CHAM and the join-

calculus

http://conal.net/fran/tutorial.htm
https://www.learnrxjs.io/learn-rxjs/concepts/rxjs-primer
https://dl.acm.org/doi/pdf/10.1145/349299.349331
https://dl.acm.org/doi/pdf/10.1145/349299.349331
https://www.cs.cmu.edu/~crary/819-f09/Landin66.pdf
http://www.lfcs.inf.ed.ac.uk/reports/86/ECS-LFCS-86-7/ECS-LFCS-86-7.pdf
https://www.cs.cmu.edu/~crary/819-f09/Hoare78.pdf
https://archive.org/details/communicatingmob00robi
https://archive.org/details/communicatingmob00robi
https://www.classes.cs.uchicago.edu/archive/2007/spring/32102-1/papers/p372-fournet.pdf
https://www.classes.cs.uchicago.edu/archive/2007/spring/32102-1/papers/p372-fournet.pdf

