
NPRG077
Write your own tiny
programming system(s)!

Tomáš Petříček, 309 (3rd floor)

 |


petricek@d3s.mff.cuni.cz
https://tomasp.net @tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg077

mailto:petricek@d3s.mff.cuni.cz
https://tomasp.net/
http://twitter.com/tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg077

Introduction
Why such a strange course?

Where I'm coming from?
 PhD, University of Cambridge

Context-aware programming languages
 Microsoft Research Cambridge

F# and applied functional programming
 The Alan Turing Institute, London

Expert and non-expert tools for data science
 University of Kent, Canterbury

History and programming systems

Demo
Coeffects playground

Did this to get my PhD...

How to show potential
uses of theoretical work?

Tiny type system running
in the web browser

Tiny demos of two
potential applications

Programming
Languages
Programming is
writing code

Formal semantics,
implementation,
paradigms, types

We know how
to study this!

Programming
Systems
Interacting with a
stateful system

Feedback, liveness,
interactive user
interfaces

But how do we
study this?

Demo
The Gamma project

Making programmatic data
exploration accessible to
non-programmers

From language to system

Small typed language

Interaction is the key.
This is why it works!

Paradigm shift in 1990s
From systems to languages

From running system to code
From state & interaction to semantics
Incommensurable ways of thinking!

History of science matters!
How did we get where we are?
What ideas got lost along the way?
How to recover them?

Research
What do I work on today?

 History and philosophy of computing
 Programming languages, types and theory
 Interactive programming environments
 Will artificial intelligence make me obsolete?

Programming languages at D3S
Growing group of great people

Jan Vitek (via Northeastern)
Aleksander Boruch-Gruszecki
Also talking to PRL-PRG at CTU!

Growing number of activities!
Programming languages reading group
New courses (NSWI182, NPRG075, NPRG077)
PL topics at the regular D3S seminar

Starting points
Writing tiny systems

Education

 Best way to learn?
 Write it on your own!

 Understand principles
 As well as subtle details

 I hope you'll have fun!
 Doing more with less?

Two uses of tiny systems
Research

 Imagine new paradigms
 Variable names

 Focus on interaction
 How exactly did it work

 Ignore practical details
 New mode of interaction

Teaching tiny systems
(Kamin, 1990)

Used in multiple
courses worldwide

Examples in Pascal

Languages covered are
APL, Clu, LISP, Prolog,
Smalltalk, Scheme, SASL

Not always focused
on the key aspect

Tiny systems and AI
(Schank, Riesbeck, 1981)

Miniature implementations
of 5 Yale AI lab programs

Faster, more efficient,
easier to understand,
modify and extend

"Miniatures, demos and
artworks" by Warren Sack

Tiny systems and ML
(Distill, 2016-2021)

Five affordances of
interactive articles

Connecting people & data
Making systems playful
Prompting self-reflection
Personalizing reading
Reducing cognitive load

Programming models
Learning by implementing

Programming models
Language paradigms

 Functional programming
 Imperative programming
 Object-oriented programming
 Logic programming

Programming models
System interaction

 Image-based programming model
Programming system is always running

 Interactive and live programming
System provides continuous feedback

 Incremental or reactive evaluation
Recompute on edit or when new data come

Demo
Logic programming in Prolog

Demo
Object-orientation in Smalltalk

What really matters?
Static structure

Source code of the program
What you have at the start

Dynamic structure
Runtime data structures
What else do you need to run

Logic of evaluation
How the dynamic state evolves?

(* A term like 'father(william, X)'
 consists of predicate 'father',
 atom 'william' and variable 'X' *)
type Term =
 | Atom of string
 | Variable of string
 | Predicate of string * Term list

(* A rule 'head(...) :- body.' *)
type Rule =
 { Head : Term
 Body : Term list }

(* A program is a list of rules *)
type Program = Rule list

Why interpreters?
A good way to explain
the structures!

Functional data types
for the static and
dynamic structure

A function to model the
evaluation logic

Operational
semantics
Standard approach
to programming
language theory

Equations vs. Code

Code actually runs!
Easier to write?

Course scope
What is not covered?

 Syntax choices and writing parsers
 Compilation and JIT-based runtimes
 Formal semantics and correctness
 Supporting real-world use cases

Tiny systems
Programming systems research

Academic research
What are we trying to study?

Basic essential principles
In isolation from other factors
You have to ignore a lot!

What to ignore in programming?
Efficient implementation?
Wide-spread user adoption?
User interface of editor tools?

Programming
language theory
Ignore implementation
and practical features

Prove that the core
idea is formally sound

Human-computer
interaction (HCI)
Ignore inner working
and implementation

Show that users can
actually use it and how

Performance
evaluation
Ignore usability and
design implications

Show that you can do
better than a baseline

Tiny systems
What can we study?

 Can talk about stateful interactive systems
 Implement key aspects of inner working
 Reconstruct interesting past systems
 But cannot be printed on 12 pages of A4

Demo
C64 BASIC

Why study universally
disliked programming
language?

Somehow allowed
everyone to program!

Interesting mode of
interaction!

Course background
Getting started with F#

The F# programming language
What is F# about?

Functional-first based on OCaml
Great interop with .NET and JS
Open-source (MIT) with team in Prague!

Who uses F# for what?
Consultancies for full-stack web dev
Finance and insurance companies for modelling
TU Kaiserslautern for systems biology
Success stories like Jet.com

Why F#?
Building tiny programming systems

 Algebraic data types for structure modelling
 Mostly functional is great for logic
 Runs everywhere & has nice tools
 I like the language and can help you!

Demo
First look at F#

Elmish architecture
Functional interactive user
interface development

Types for application
State and user Event

Functions to render
and update state

Demo
Building a TODO list in F#

Closing
Write your own tiny system

Practical details
Course structure

Videos + bi-weekly hands-on labs
Watch before & finish after!
Remote possible - email me
Check the schedule on course web site!

To get the credits
Active participation in the labs
Awarded based on a git repo
Complete basic tasks for 4/6 systems

Conclusions
Write your own tiny programming system(s)!

Learn interesting programming models!
Nice programming research methodology
We have projects and PhD positions available :-)

Tomáš Petříček, 309 (3rd floor)

 |


petricek@d3s.mff.cuni.cz
https://tomasp.net @tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg075

mailto:petricek@d3s.mff.cuni.cz
https://tomasp.net/
http://twitter.com/tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg075

References
Tiny system examples

Starting points

Ingalls, D. (2020).
Hohman, F. et al. (2020).
Schank, R. C., Riesbeck, C. K. (1981).

Kamin, S. (1990)
. Addison-Wesley.

Kamin, S. (1990)
Sack. W. (2020).

Coeffects: Context-aware programming languages
The Gamma: Democratizing data science
The Lost Ways of Programming: Commodore 64 BASIC

The Smalltalk Zoo: Smalltalk-78 (NoteTaker)
Communicating with Interactive Articles

Inside Computer
Understanding Five Programs Plus Miniatures

Programming languages: an interpreter-based
approach

PLIBA source code mirror on GitHub
Miniatures, Demos and Artworks: Three

Kinds of Computer Program, Their Uses and Abuses

https://tomasp.net/coeffects/
http://turing.thegamma.net/
https://tomasp.net/commodore64/
https://smalltalkzoo.thechm.org/
https://distill.pub/2020/communicating-with-interactive-articles/
https://www.routledge.com/Inside-Computer-Understanding-Five-Programs-Plus-Miniatures/Schank-Riesbeck/p/book/9780898590715
https://www.routledge.com/Inside-Computer-Understanding-Five-Programs-Plus-Miniatures/Schank-Riesbeck/p/book/9780898590715
https://dl.acm.org/doi/10.5555/78092
https://dl.acm.org/doi/10.5555/78092
https://github.com/pliba
https://www.shift-society.org/hapop5/boa.pdf
https://www.shift-society.org/hapop5/boa.pdf

