NPRGO77

Write your own tiny
programming system(s)

Tomas Petricek, 309 (3rd floor)

™ petricek@d3s.mff.cuni.cz

© https//tomasp.net | @tomaspetricek

© https//d3s.mff.cuni.cz/teaching/nprg0/7/

mailto:petricek@d3s.mff.cuni.cz
https://tomasp.net/
http://twitter.com/tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg077

Introduction
Why such a strange course?

Where I'm coming from?

il PhD, University of Cambridge
Context-aware programming languages

e Microsoft Research Cambridge
= and applied functional programming

b The Alan Turing Institute, London
Expert and non-expert tools for data science

M University of Kent, Canterbury
History and programming systems

Demo
Coeffects: Context-aware programming languages C O e]C]Ce C tS p | a\/ g ro U n CI

Papers

Coeffects are Tomas Petricek’s PhD research proje We hide some details by default to keep the
programming language abstraction for understanding how programs tutorial shorter, but you can get them back if
access the context or environment in which they execute. you want!

The context may be resources on your mobile phone (battery, GPS
location or a network printer), loT devices in a physical neighborhood Short is i I'm h | | E ; O e m
or historical stock prices. By under;tanding the neighborhood or) good! You practical! A
history, a context-aware programming language can catch bugs earlier can always Show me more

and run more efficiently. come back. examples.

This page is an interactive tutorial that shows a prototype

implementation of coeffects in a browser. You can play with two M

simple context-aware languages, see how the type checking works Love O W O S O W O e | I I a

and how context-aware programs run. theory! m Show me Q
0 S

Give me all the CI8 ULBIE

This page is also an experiment in presenting programming language not an issue.
equations.

research. It is a live environment where you can play with the theory M ?
using the power of new media, rather than staring at a dead pieces of l | S e S O e O re | (a W O r
wood (although we have those too). .

Programming languages evolve to reflect the changes in the computing What problem are
ecosystem. The next big challenge for programming language designers
is building languages that understand the context in which programs run. coeffects SOlVng?
This challenge is not easy to see. We are so used to working with .
context using the current cumbersome methods that we do not even see
that there is an issue. We also do not realize that many programming
features related to context can be captured by a simple unified
abstraction. This is what coeffects do!
What are some examples of context-aware computations?
* In cross-platform code, the functions available on different

platforms are a context. You can use #if . If you get this wrong, | I I I f \/\/
your code won't even compile!

e In the Game of Life or weather simulations, each cell in a grid
accesses neighboring cells. But do you know how many neighbors

potential applications

xd»

Charles
University

— ¥ <: Top Based on System F (23-1) and simple subtyping (15-1)
1
Syntax Subtyping
£ ferms: res<s (S-REFL)
X variable
Ax:T.t abstraction I'eS<U Frev<T (S-TRANS)
tt application TES<T
AX<:T.t type abstraction o
FesS< T S-Top
t [T] type application P (5-Tor)
X<:TeTl
v o= values: TEX<T (5-TVaR)
Ax:T.t abstraction value
AX<:T.t type abstraction value FETi<t S [ES < To (S-ARROW)
TESi—-S<Ti—Ta '
T == types: . .
X type variable T Vl;(' X_TJ'UlsF 52;)(T_ZU = (S-ALL)
Top maximum type = essEllodp & W2kl 1B
T-T type of functions Typin .
g _I' Ft:T
VX<:T.T universal type w Ter -
X:
— (T-VAR)
I = contexts: FEx:T
@ empty context Ix:Ti-t2 1 To
T, x:T term variable binding [EAx:Tr.ts: Ti—Ts (T-ABs)
I[LX<:T type variable binding
't : Tii—=Ti2 Ity Tiy
. (T-App)
Evaluation t—t FFtit i T
tl—otll I[LX<:iTy —t2:T2
R —— - T-TABS
Tttt (E-Arp1) TEAX<iTy .6 ¢ VX< T, L TABS)
tz—-t'z (E-APP2) -t : VX<:Tqp . To2 I'-Tr <t Ty
_ -APP:
vity — v th ? [=t [T2] @ [X = T2lTe2
N " (T-TApP)
11— 4
- (E-TAPP) '=t:$S F=S<T
1 [T2] — £ [T2] e (T-SuB)

(AX<:Tyy . t12) [T2] — [X = T2lt12
(E-TAPPTABS)

(Ax:Typ.t12) V2 — [X = valtiz (E-APPABS)

Programming
Languages

Programming Is
writing code

Formal semantics
implementation,
pDaradigms, types

We know how
to study this!

)

L2

Charles
University

Wednescay
Oectober 12, 1977
1049 am

XEROX - toacivgResearch e

SCTEETL Testare
Smalltalk quiic

Changes
Fileg

Fones
Classes
Messages
Hardeopy

1314 disk pages

R
SrElEa 2
G, TR
Event Resp) THIS 15 13 Supendass for presemnoing windons onoe dispiy, I
enter [self ohds corirm il oie srglus s o depresaed oueshde. itle i

caitherul TS Gonred, fr dismribnees mresneges o frovlf Igead o nser
leave [docuy \ECRIGTE,

st oot ecnlin z

[eclitMen | STHTUP i
sotollBar [frome containg: stylus loc=.

[self enter,

[tepeats

[[frame containg: stylus loc=.
[Reyboard active[self keyboari]

Sty “ Home
self oury — - .

stylus d

fifalse]

Dofault Eventlll - Welcome to HyperCard _

Color Tools are ON
.

el & &K

HyperCard Tour HyperCard Help Practice

[fm‘m,e fulthakh
titleframe p

titleframe co =3

AN
Art Bits Addresses Phone Dialer

Y=
QuickTime Tools AppleSoript Mail Merge

v
AppleSeript Text Controls

Home

@1987-1995 Apple Computer, Inc.
All Rights Reserved.

New Features

Graph Maker

Stack Kit

Programming
Systems

Interacting with a
stateful system

Feedback liveness
iNteractive user
interfaces

But how do we
study this?

LT3
Charles
University

The Alan Turing Institute -

Data playground

let china = worldbank.byCountry.China.'Climate Change'.'C02 emissions (kt)'
.setProperties(seriesName="China")

let usa = worldbank.byCountry.'United States'.'Climate Change'.'C02 emissions (kt)'
.setProperties(seriesName="USA")

compost.charts.lines([china,usal).setColors(["red", "blue"1)
.setAxisX(1960).setLegend("right").setSize(800,300)

10,000,000
l USA

8,000,000 l China
6,000,000

4,000,000

2,000,000

0
1960 1970 7980 7990 2000 2010

Demo
The Gamma project

Making programmatic data
exploration accessible to
NoN-programmers

From language to system
small typed language

Interaction is the key.
Thisiswhy it works!

Paradigm shift in 1990s

From systems to languages

e From running system to code

e From state & Interaction to semantics
e [ncommensurable ways of thinking!

History of science matters!

e How did we get where we are?
e \What ideas got lost along the way?
e How to recover them?

The Structure of a Programming

Richard P. Gabriel Language
“I don’t want to die in a language 1BM Research <
| can’t understand.” Redwood City, CaliforniaUsa~ Revolution
 Jorse Luis Borges e b com
92 mecom

Abstract

Categories and Subject Descriptors A0 [General]

General Terms Design

Keywords Engincering, science, paradigms, incommensu-
rability

1n 1990, two youngand very smart computer sci-
entists—Gilad Brachaand William Cook—wrote
apivotal paper called “Mixin-based Inheritance™
[whichimmediatelylaid claimtobeingthefirst

Misio-based Ieritace

at Beta, Smalltalk, Flavors, and CLOS
‘mechanism that could account for the three different sorts

i in these I luding mixins
from Flavors and CLOS. They named

My attention was directed to this paper by Gilad Bracha
himself when he told me in Brazil at AOSD in the spring of
2011 that most Lisp people who read the paper had strong
objections to what he and William Cook had written about
Lisp and CLOS.

That night I pulled the paper down from the ACM server
and read it while outside enormous puffed clouds dwelled
overhead, it from beneath by the town of Porto de Galinhas
on the Brazilian coast; the smells of burning sugarcane and
bitter ocean pushed into my room.

Permission to make digital or hard copies ofall or partofthis work
for personal o classroom use s granted without fee provided that
copies re not made or distributed for profit or commercial advan
tage and that copies bear this notice and the full citation on the
first page. To copy otherwise,or republish, o poston servers r to

Engineering, A Path To Science

Engincers build things; sc
phers get lostin broad daylight.

‘What I read in Brazil reminded me of my quest to dem-
onstrate thatin the pursuit of knowledge, atleast in software

describe reality; philoso-

p
science—that i, even ifscience ultimately produces the most
reliable facts, the process often begins with engineering.
Thelieve it's a common belief that engincers only follow
paths laid down by scientists, adding creativity and practi
aal ofscience

Omward! 2012, October 19-26,2012, Tucson, Arizona, USA.
Copyright © 2012 ACM 978-1-4503-1562-3/12/10...$15.00.

at Columbia University, in an essay for the New York Times

L2

Charles
University

Research
What do | work on today?

o 3
Tl
<[>

L~

History and philosophy of computing
Programming languages, types and theory

nteractive programming environments

W, Will artificial intelligence make me obsolete?

Programming languages at D35S

Growing group of great people - e .

MO ./ . S

® Jaﬂ \/|J[ek (\/ia NOI’TheaStel’ﬂ) ® Department of Distributed‘:}- -

EE and Dependable Systems
Faculty of Mathematics and Physics, Charles University

o Aleksander Boruch-Gruszeck]
e Also talking to PRL-PRG at CTUI

Growing number of activities!

e Programming languages reading group
e New courses (NSWI182, NPRGO/5, NPRGO/7)
e PL topics at the reqular D3S seminar

PhD in programming languages, systems and tools

Can we make programming faster, better, safer, easier and more fun?
Join our group to work on data science languages or pursue your own ideas!

+ Theory and type systems? Usability and interactivity? \h,
Add types to libraries never designed to Find ways of creating programs that are
have them like data visualization in R? accessible also to non-programmers?

B Learning from past systems? Funded positions available! g}
Think about interactive and stateful pro- Making data scripting safer and more
gramming environments, not languages? With salary in the range 35k-40k/month

Get in touch to find out more and discuss your own research ideas!

Tomas Petricek (Mala strana, S309), email: petricek@d3s.mff.cuni.cz

Starting points
Writing tiny systems

Two uses of tiny systems

Education

A.".l
) §
—

3 Best way to learn?
Write It on your own!

€ Understand principles
As well as subtle detalls

W | hope you'll have fun!
Doing more with less?

Research

R Imagine new paradigms

A

Variable names

Focus on interaction
How exactly did it work

|gnore practical details
New mode of interaction

!

Inter preter'BaSEd
Approach
| |

Teaching tiny systems
(Kamin, 1990)

Used in multiple
courses worldwide

Examples in Pascal

Languages covered are
APL, Clu, LISP Prolog,
Smalltalk, Scheme, SASL

Not always focused
on the key aspect

Tiny systems and Al
(Schank, Riesbeck, 1981)

Miniature implementations
of 5 Yale Al lab programs

Faster more efficient
easier to understand,
modity and extend

‘Miniatures, demos and
artworks' by Warren Sack

Contents

Introduction
Interactive Articles: Theory &
Practice
Connecting People and Data
Making Systems Playful
Prompting Self-Reflection
Personalizing Reading
Reducing Cognitive Load
Challenges for Authoring
Interactives
Critical Reflections

Looking Forward

Communicating with
Interactive Articles

Examining the design of interactive articles by synthesizing theory from disciplines such
as education, journalism, and visualization.

FiGURE 1 Exemplary Interactive Articles From Around The Web. Se

i article for more information.

AUTHORS AFFILATIONS PUBLISHE 0

Fred Hohman Georgia Tech Sept. 11, 2020 10.23915/distill. 00028
Matthew Conlen University of Washington

Jeffrey Heer University of Washington

Duen Horng (Polo) Chau Georgia Tech

Computing has changed how people communicate. The transmission of news, messages, and
ideas is instant. Anyone’s voice can be heard. In fact, access to digital communication
technologies such as the Internet is so fundamental to daily life that their disruption by
government is condemned by the United Nations Human Rights Council [11. But while the
technology to distribute our ideas has grown in leaps and bounds, the interfaces have
remained largely the same.

Parallel to the development of the internet, researchers like Alan Kay and Douglas Engelbart
worked to build technology that would empower individuals and enhance cognition. Kay
imagined the Dynabook (2! in the hands of children across the world. Engelbart, while best
remembered for his “mother of all demos,” was more interested in the ability of computation
to augment human intellect (3]. Neal Stephenson wrote speculative fiction that imagined
interactive paper that could display videos and interfaces, and books that could teach and
respond to their readers [4]

Tiny systems and ML
Distill, 2016-2021

Five affordances of
interactive articles

Connecting people & data
Viaking systems playful
Prompting self-reflection
Personalizing reading
Reducing cognitive load

L2

Charles
University

Programming models
_earning by Implementing

Programming models
Language paradigms

= Functional programming
IR |mperative programming
e Object-oriented programming

S Logic programming

Programming models
System interaction

P8 Image-based programming model
Programming system is always running

= Interactive and live programming
System provides continuous feedback

BB Incremental or reactive evaluation
Recompute on edit or when new data come

Demo
Logic programming in Prolog

Demo
Object-orientation in Smalltalk

\What really matters?

Static structure

e Source code of the program
e \What you have at the start

Dynamic structure

e Runtime data structures
e \What else do you need to run

Logic of evaluation
e How the dynamic state evolves?

(* A term like 'father(william, X)'
consists of predicate 'father',
atom 'william' and variable 'X' *)

type Term =
| Atom of string
| Variable of string
| Predicate of string * Term list

(* A rule 'head(...) :—= body.' *)
type Rule =
{ Head : Term
Body : Term 1list }

(* A program is a list of rules *)
type Program = Rule list

Why interpreters?

A good way to explain
the structures!

Functional data types
for the static and
dynamic structure

A fTunction to model the
evaluation logic

(deref) (1,s) — (n,s) if{ € dom(s) and s(¢) =n
(assignl) (£:=n,s) — (skip,s +{{— n}) if £ € dom(s)

< (¢, ")

: s) —

assign2

(assign2) e,s) — (L:=¢,s)
ql)

(skip; e2, s) — (ea, s)

{e1,5) — (e1, ")

seq2
e s — (ehi e o)

(ifl) (if true then e, else e3,s) — (e, s)
(if2) (if false then ey else e3,s) — (e3,s)

(i) o1, 8) — {63, ¢
(if e1 then ey else e3,s) — (if e then ey else e3,s’)

Operational
semantics

Standard approach
fo programming
language theory

Equations vs. Code

Code actually runs!
casler to write”

Course scope
What Is not covered?

<[> Syntax choices and writing parsers
Z® Compilation and JIT-based runtimes
Formal semantics and correctness
L& Supporting real-world use cases

Tiny systems
Programming systems research

Academic research

What are we trying to study?

e Basic essential principles
e [N Isolation from other factors
e YOU have to ignore a |ot!

What to ignore in programming?

e Efficient implementation?
e \Wide-spread user adoption?
e User interface of editor tools?

TRANSACTIONS

ooooo

" - ROYAL SOCIETT OF EDI

t e —
(const e@elkFc:e (van (z:7)e(use) Fx: 7T
I'rx:o0@Rx(s)Fe:T
(abs) .
l'erRF-Xre:o =71
(@pD) leRte o7 IzeShes:o
PP I',I';eRx (t®S)Feiex: T
et I'eStei:oc TIs,z:0@Rx(t)Fex:T
(let) Fl,FQ@RX(t®5)|—|et$:€1in€2ZT
Il'eRFe: 7 I'eR ~T@R,0
(ctx) 7
I'eR' F6e: 1
IYeR' ~»TeR,0
(weak) [z :7e@eR x (ign) ~ T'eR,)
F,y:o,z:1,'2@Rx (t) x (s) xQ ~»
(exch) IN,z:7my:0,l2@Rx{(s)x(t)xQ,0
(contr) I'z:7,I2@Rx (s®t) xQ ~

(sub)

N,y:7mz:71,T@Rx(s)x{t)xQ, [y, z > x]

IN,z: 7, I2@Rx(s') xT ~~

/
I'i,z:7,T2@R=x(s)=T,0 (s <)

Programming
language theory

lgnore implementation
and practical features

Prove that the core
idea is formally sound

L2

Charles
University

@ Playground

< c

olympics. 'filter data'.'Games is'.'Rio (2016)'.then
.'group data'.'by Team'.'sum Gold'.'sum Silver'.then

.'sort data' |
K by Gold
A by Gold descending
Full source code A by silver
in a text editor A by Silver descending
A by Team
M by Team descending
A then
Team Gold
United States 141
United Kingdom (Great Britain) 68
Germany 53

- a X

Q O Guest

Programming vi
iterative prompti

ng

©)

Silver
55

55

Instantaneous

preview of results

Human-computer
interaction (HCl)

lgnore inner working
and implementation

Show that users can
actually use it and how

L2

Charles
University

Delay (ms)

1000~

() combine:
(d)blur ©)let

AL

(@) load ®)arey

(c) blur
1 J-J_ ‘
N i
0 10 2

Token (number)

(g) combine () let

1 L

Evaluation method

W caroyvaie
a2y

M Figure 11 Time required to recompute the results of a sample program after individual

tokens are added or modified for three different evaluations strategies.

anjea-Ag-es

Aze|

Count

anl

1000 2000
Delay (ms)

0 1000 2000
Delay (ms)

5

Evaluation method

[P
lazy
[

B Figure 12 Distribution of delays incurred when updating previews. We show a histogram
computed from all delays (left) and only from delays larger than 15 ms (right).

Performance
evaluation

lgnore usability and
design implications

Show that you can do
petter than a baseline

L2

Charles
University

Tiny systems
What can we study?

R Can talk about stateful interactive systems

2
B

@

mplement key aspects of inner working
Reconstruct interesting past systems

But cannot be printed on 12 pages of A4

110 DRAWING A MAZE

There is a lot of clever hacks that you can do in BASIC with a few
lines of code. This ease of getting started contributes to what
makes it a fun programming environment. If you found an
interesting hack in a computer magazine, you could type it into the
console and run it straight away.

The fact that you had to copy code from a paper magazine sounds
like a hassle, but it has an educational quality. It keeps the samples
that can be distributed in this way reasonably small and it makes
you think about the code as you are typing it.

To experience this yourself, you should try typing the following
three-line program to the console! It generates a famous maze.
This relies on special Commodore character codes: 147 clears the
screen, 205 and 206 are backslash and slash crossing the full
character size.

10 PRINT CHR$(147);

20 PRINT CHR$(205.5 + RND(1));
30 GOTO 20

RUN

200 CREATING A MOVING BALL

To build our Breakout game, we can proceed gradually. This is yet
another nice feature of the programming environment. We want to
create a ball that bounces off the wall, but let's start with a ball
that just moves to the right.

We will do only a tiny bit of planning. Code that initializes
variables with the game state starts at line 1000 and code that
handles ball movement will start at 2000. We will also first clear
the screen and use DELETE to remove all the previous maze and
Hello World code.

Demo
64 BASIC

Why study universally
disliked programming
language”?

Somenhow allowed
everyone to program!

Interesting mode of
INnteraction!

LT3
Charles
University

Course background
Getting started with F

The F# programming language

What is F# about?

e Functional-first based on OCaml|
e Greatinterop with NET and JS {
e Open-source (MIT) with team in Prague!

Who uses F# for what?

e Consultancies for full-stack web dev

e Finance and insurance companies for modelling
e TU Kaiserslautern for systems biology

e Success stories like Jet.com

Why F#?
Building tiny programming systems

em Algebraic data types for structure modelling
L& Mostly functional is great for logic

(]

(4 Runseverywhere & has nice tools

® | like the language and can help you!

Demo
First look at F

V) pc\'a = 2y
‘ N VQ\AJ?.\,

Twikia revdev >| ML
(wsch*re. Q4]
VQ.\/\AQ\,
> 34 > HT(“[(_7
S

—|HTHL ’

s

widial = State
\revu&e\» . tS-ra+e. = HUTHL

u(:c.\a.\-v. : 'Stare — ‘Eveut = ‘Sﬂ're,

Elmish architecture

Functional interactive user
interface development

Types for application
State and user Event

—FUNctions to render
and update state

Demo
Building a TODO listin F

Closing
Write your own tiny system

Practical detalils

Course structure

Videos + bi-weekly hands-on labs
Watch before & finish after!

Remote possible - email me

Check the schedule on course web sitel

To get the credits

e Active participation in the labs
e Awarded based on a git repo
e Complete basic tasks for 4/6 systems

Conclusions

Write your own tiny programming system(s)!

e [earn interesting programming models!
e Nice programming research methodology
e \We have projects and PhD positions available :-)

Tomas Petricek, 309 (3rd floor)

™ petricek@d3s.mff.cuni.cz

© https//tomasp.net | @tomaspetricek

© https;//d3s.mff.cuni.cz/teaching/nprg0/5

mailto:petricek@d3s.mff.cuni.cz
https://tomasp.net/
http://twitter.com/tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg075

References

Tiny system examples

e Coeffects: Context-aware programming languages
e [he Gamma: Democratizing data science
e The Lost Ways of Programming: Commodore 64 BASIC

Starting points

Ingalls, D. (2020). The Smalltalk Zoo: Smalltalk-78 (NoteTaker)
Hohman, F. et al. (2020). Communicating with Interactive Articles
Schank, R. C., Riesbeck, C. K. (1981). Inside Computer
Understanding Five Programs Plus Miniatures

Kamin, S. (1990) Programming languages: an interpreter-based
approach. Addison-Wesley.

Kamin, S. (1990) PLIBA source code mirror on GitHub
Sack. W. (2020). Miniatures, Demos and Artworks: Three
Kinds of Computer Program, Their Uses and Abuses

https://tomasp.net/coeffects/
http://turing.thegamma.net/
https://tomasp.net/commodore64/
https://smalltalkzoo.thechm.org/
https://distill.pub/2020/communicating-with-interactive-articles/
https://www.routledge.com/Inside-Computer-Understanding-Five-Programs-Plus-Miniatures/Schank-Riesbeck/p/book/9780898590715
https://www.routledge.com/Inside-Computer-Understanding-Five-Programs-Plus-Miniatures/Schank-Riesbeck/p/book/9780898590715
https://dl.acm.org/doi/10.5555/78092
https://dl.acm.org/doi/10.5555/78092
https://github.com/pliba
https://www.shift-society.org/hapop5/boa.pdf
https://www.shift-society.org/hapop5/boa.pdf

