NPRGO77
TinyBASIC: A tiny interactive
mperative programming system

Tomas Petricek, 309 (3rd floor)

™ petricek@d3s.mff.cuni.cz

© https//tomasp.net | @tomaspetricek

© https//d3s.mff.cuni.cz/teaching/nprg0/7/

mailto:petricek@d3s.mff.cuni.cz
https://tomasp.net/
http://twitter.com/tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg077

Dijkstra on BASIC

't is practically impossible
to teach good program-
ming to students that have
Nad a prior exposure to
BASIC: as potential prog-
rammers they are mentally
mutilated beyond hope of
regeneration.

BASIC as a language?
Men.

Why look at BASIC?

BASIC as a programming system

Right at the birth of microcomputers
Part of an early computing culture

Nteresting mode of interaction!

BASIC as a programming problem

Interpreter with richer state

e Statements vs. expressions
e More interesting F# programming!

BASIC
INnteraction and emulators

Demo
Writing BASIC I
C64 emulator

Realistic machine-level
system emulator

All the clever hacks
with POKE work!

See: Co64 emulator

https://virtualconsoles.com/online-emulators/c64/

What is interesting about it?

Learnability

Basic Loader

[e]
REM % BASIC LOADER FOR EXTENDED %
*

REM % NICK HAMPSHIRE
8@ RE!

*
98 REM N*mm“"lm#“ﬂm
PRINT “ 3000 ENTERING

e Your computer boots into BASIC =

e Copy games code from magazines

OF
ERf B BE 34518" :END
T III‘IﬁLUES ENTERED CORRECTLV"
INT " MNTO RUI S ANY KI
4IF Fl’()““THENIZBG GUTUI 190

8)

22,128,57, 128, 195, 194, 205
6,48,139,227, 1311154‘201
25 159;139 2475530,591 131

TA76, 72,178, 0,49,234,63
DATA128, 71,254, 74,243, 145,242

rom novice to hacker
e Simple, but you can do lots with POKE

DATA136,227., 162 21,160, 128; 134
DATA195. 132, 196, 160,35, 177, 195

DATA133.51,133,53,133,55,

DATA172, 16@. 128,32, 45»229;162

DATA251, 154,208, 172,147, 13,32
a A32,32,32,42,42, 42,42

90
DATA13, 32,54,52,75, 32,82

teraction mode
e Code editor and REPL at the same time v

Charles
University

200 CREATING A MOVING BALL

To build our Breakout game, we can proceed gradually. This is yet another
nice feature of the programming environment. We want to create a ball
that bounces off the wall, but let's start with a ball that just moves to the
right.

We will do only a tiny bit of planning. Code that initializes variables with
the game state starts at line 1000 and code that handles ball movement
will start at 2000. We will also first clear the screen and use DELETE to
remove all the previous maze and Hello World code.

PRINT CHR$(147);

DELETE

1000 REM STATE INITIALIZATION
1010 X=0

2000 REM BALL MOVEMENT

2010 POKE X CHR$(32)

2020 X=X+1

2030 POKE X CHR$(209)

2040 GOTO 2000

RUN

To draw a ball at a specific location, we use POKE which writes a value to a
memory location. Here, the part of memory representing a screen starts at
offset 0. We first erase the previous ball using a space (character code 32)
and then draw a ball (character code 209).

Demo
My Co4 essay

Explore the interaction
How It helps write, tes
and debug code?

Not fully accurate
Program does not live
N Mmemory, POKE
offsets are wrong

xd»

Charles
University

The F# language
What you need to know

TinyBASIC
What F# do you need to know

w

< @
1l =®

Project, console and tall recursion
—# language logic and data types
Records, functions, tuples, patterns

ISt processing using bullt-in functions

Demo
Project, console, recursion

let point = (1, 10)

let (x, y) = point

(* (int*int) -> (int*int) *)

let rotate (x, y) = (y, X)

(* int -> (int*int) -> (int*int) *)
let moveX by (x, y) = (x + by, V)
(* (int*int) -> int *)

let area (%, y) =
match x, y with
| 0, I , 0 ->0
|X/y_>X*y

(* (int*int) -> int *)

let area pt =
match pt with
(0,) I (, 0)) -> 0
|X1Y‘>X*Y

Tuples, patterns
and functions

Tuple type int * int
S just another ordinary
type of values

Pattern (x,y) can
appear in multiple
locations in code

Functions can mix
arguments and tuples

SKETCH
Tuples and patterns

let 11 = [1; 2; 3; 4]
let 12 = 1::2::3::4 []
let 13 = [1..4]

(* Pattern matching lists ¥*)
match list with

| [el; e2] -> (...)

| el::els => (...)

[=> (...)

(* Possible, but not very useful ¥*)
let (e::es) = list
let foo [el;e2] = (...)

(* Higher-order 1list functions ¥*)
let twice x = x * X

List.map twice [1..10]

List.map (fun x -> x * x) [1..10]
List.sum [1..10]

List constructors
and list patterns

List type written as
list<int> Or int list

Constructed using : :
(rare) and [..] (often)

Patterns ::and [..]
can appear anywhere,
but are partial

Demo
Real-world list processing

LCeci nest pas une fufie.

The pipe operator

Fluent style for
functional data
processing

let (|>) x f = f x

In bash scripting (),
adopted by R (%>%),
maybe JavaScript

Demo
Real-world list processing (2/2)

TinyML
Interpreter structure

type Value = (* .. *)
type Expression = (* .. *)

type Command =

(* Jumps and subroutines *)

| Goto of int

| GoSub of int

| Return

(* I/O operations *)

| Clear

| Print of Expression list

| Input of string

(* If, variables and control *)
If of Expression * Command
Assign of string * Expression
Run

|
|
|
| Stop

BASIC interpreter
structure (1/2)

Expressions evaluate to
Values and are simple

Commands contain all the
operations that modify the
pDrogram state

(* State of the interpreter stores BASIC iﬂt@l’pl’@ter

program lines as sorted list,

variables in a dictionary, StrUCture (2/2)

generator for the RND function
and stack for GOSUB/RETURN *)

e State Is the program
rogram : list<int * Comman .
variables : Map<string, value> SQUICE CcOde, variables
Random : System.Random
ReturnStack : int list) (and a few extras)
(* Evaluat mmand and then : X
rui tieenzxioonz (i? any)e Current |Ine IS a|SO
until the program ends.
State -> (Fl)ntg* Cmd) -> State *) a part Of the State

let rec runCommand state (line, cmd) ﬁijrwjtm)ﬂ arQNJFTKEHY)

(* .. %)

(* Find the next line after 'line'
and run that or stop i1f none *)

and runNextlLine state line =
(* .. %)

L2

Charles
University

Demo
BASIC Hello Worla

TinyBASIC
How the BASIC language works

REM You can write comments!
REM Jumping and calls

GOTO 10

GOSUB 10

RETURN

REM Printing to the screen
POKE 1024 CHRS (42)
PRINT "HELLO ";X

REM Variables and ifs
X=10
IF (X>0) GOTO 10

REM Control
RUN
STOP

BASIC basics

GOSUB jJumps, but keeps
return location on stack
for RETURN

PRINT takes a sequence of
expressions (and we ignore
CUrsor moving)

POKE writes a byte to
memory (we will cheat)

We ignore command
chaining (:)

Demo
Flegant programs with GOSUB :-)

TinyBASIC
A bit of theory

Meaning of programs

Functional languages

e Compositional semantics
e Define meaning of ey + e I

terms of the meaning of e; and e,

Imperative languages

e \What is the meaning of PRINT "HI""
e \Whatis the meaning of GOTO 187

e \Whatever the interpreter does..

e Not very good for program proofs!

00
10
20
30
40
50
60
70
100

REM FACTORIAL IN BASIC
Q=5

N=1

F=1

TF N=Q THEN GOTO 100
N=N+1

F=F*N

GOTO 40

PRINT F

Reasoning about
BASIC programs

Hoare triples {P}c{Q}

Pre-condition P what is

true before the command
execution

Post-condition Q what is

true after the command
execution

Reasoning about

. BASIC programs

186 Q=5

20 N= Postconditions of a
{F=NY command before have to
3F =N match preconditions of a

40 IF N=Q THEN GOTO 160 COmmaﬂd a]a[er

S_F‘N‘.) F\"P* (“*4\

50 NN = NE v (N +A) Coming up with the right
teentty o= N properties is tricky!

706 GOTO 40
LE=NLAN=Q)

100 PRINT F

Lab overview
TinyBASIC system step-by-step

TinyBASIC - Basic tasks

1. Add GOTO and better PRINT for infinite loop fun!
—valuation of expressions, finding of the next line

7. Implement interactive program editing
Handle commands that edit the program code

3. Add variables and the conditional command
Needs Map<string, Value> inthe program state

4. Random function and (not quite correct) POKE
To be able to generate random stars!

5. A few more functions and operators
As required by the Nim (subtraction) game

TinyBASIC - Bonus tasks

1. Add support for more elegant programs with GOSUB
eeds list<int> (stack of return line numbers) in state

. Refactor our Nim code sample to use it
Dijkstra will still not be happy, but we avoid repetition

3. Implement an "Al" player for our Nim game
Wikipedia says this is a solved problem :-)

Closing
A tiny Imperative programming system

Conclusions

A tiny interactive imperative programming system

—valuation logic not that far from TinyML!
mperative interpreter needs much more state
How exactly interactive editing worked?!
Parsing & interactive editing out of scope ~(

Tomas Petricek, 309 (3rd floor)
™ petricek@d3s.mff.cuni.cz

© https//tomasp.net | @tomaspetricek
© https//d3s.mff.cuni.cz/teaching/nprg0/7/

mailto:petricek@d3s.mff.cuni.cz
https://tomasp.net/
http://twitter.com/tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg077

