
NPRG077
TinyBASIC: A tiny interactive
imperative programming system

Tomáš Petříček, 309 (3rd floor)

 |


petricek@d3s.mff.cuni.cz
https://tomasp.net @tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg077

mailto:petricek@d3s.mff.cuni.cz
https://tomasp.net/
http://twitter.com/tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg077

Dijkstra on BASIC
It is practically impossible
to teach good program-
ming to students that have
had a prior exposure to
BASIC: as potential prog-
rammers they are mentally
mutilated beyond hope of
regeneration.

BASIC as a language?
Meh.

Why look at BASIC?
BASIC as a programming system

Right at the birth of microcomputers
Part of an early computing culture
Interesting mode of interaction!

BASIC as a programming problem
Interpreter with richer state
Statements vs. expressions
More interesting F# programming!

BASIC
Interaction and emulators

Demo
Writing BASIC in
C64 emulator

Realistic machine-level
system emulator

All the clever hacks
with POKE work!

See: C64 emulator

https://virtualconsoles.com/online-emulators/c64/

What is interesting about it?
Learnability

Your computer boots into BASIC
Copy games code from magazines

From novice to hacker
Simple, but you can do lots with POKE

Interaction mode
Code editor and REPL at the same time

Demo
My C64 essay

Explore the interaction
How it helps write, test
and debug code?

Not fully accurate
Program does not live
in memory, POKE
offsets are wrong

The F# language
What you need to know

TinyBASIC
What F# do you need to know

 Project, console and tail recursion
 F# language logic and data types
 Records, functions, tuples, patterns
 List processing using built-in functions

Demo
Project, console, recursion

let point = (1, 10)
let (x, y) = point

(* (int*int) -> (int*int) *)
let rotate (x, y) = (y, x)

(* int -> (int*int) -> (int*int) *)
let moveX by (x, y) = (x + by, y)

(* (int*int) -> int *)
let area (x, y) =
 match x, y with
 | 0, _ | _, 0 -> 0
 | x, y -> x * y

(* (int*int) -> int *)
let area pt =
 match pt with
 | ((0, _) | (_, 0)) -> 0
 | x, y -> x * y

Tuples, patterns
and functions
Tuple type int * int
is just another ordinary
type of values

Pattern (x,y) can
appear in multiple
locations in code

Functions can mix
arguments and tuples

SKETCH
Tuples and patterns

let l1 = [1; 2; 3; 4]
let l2 = 1::2::3::4::[]
let l3 = [1..4]

(* Pattern matching lists *)
match list with
| [e1; e2] -> (...)
| el::els -> (...)
| [] -> (...)

(* Possible, but not very useful *)
let (e::es) = list
let foo [e1;e2] = (...)

(* Higher-order list functions *)
let twice x = x * x
List.map twice [1..10]
List.map (fun x -> x * x) [1..10]
List.sum [1..10]

List constructors
and list patterns
List type written as
list<int> or int list

Constructed using ::
(rare) and [..] (often)

Patterns :: and [..]
can appear anywhere,
but are partial

Demo
Real-world list processing

The pipe operator
Fluent style for
functional data
processing

let (|>) x f = f x

In bash scripting (|),
adopted by R (%>%),
maybe JavaScript

Demo
Real-world list processing (2/2)

TinyML
Interpreter structure

type Value = (* .. *)
type Expression = (* .. *)

type Command =
 (* Jumps and subroutines *)
 | Goto of int
 | GoSub of int
 | Return
 (* I/O operations *)
 | Clear
 | Print of Expression list
 | Input of string
 (* If, variables and control *)
 | If of Expression * Command
 | Assign of string * Expression
 | Run
 | Stop

BASIC interpreter
structure (1/2)
Expressions evaluate to
Values and are simple

Commands contain all the
operations that modify the
program state

(* State of the interpreter stores
 program lines as sorted list,
 variables in a dictionary,
 generator for the RND function
 and stack for GOSUB/RETURN *)
type State =
 { Program : list<int * Command>
 Variables : Map<string, Value>
 Random : System.Random
 ReturnStack : int list }

(* Evaluate a command and then
 run the next one (if any)
 until the program ends.
 : State -> (int * Cmd) -> State *)
let rec runCommand state (line, cmd) =
 (* ... *)

(* Find the next line after 'line'
 and run that or stop if none *)
and runNextLine state line =
 (* .. *)

BASIC interpreter
structure (2/2)
State is the program
source code, variables
(and a few extras)

Current line is also
a part of the state
(function argument)

Demo
BASIC Hello World

TinyBASIC
How the BASIC language works

REM You can write comments!
REM Jumping and calls
GOTO 10
GOSUB 10
RETURN

REM Printing to the screen
POKE 1024 CHR$(42)
PRINT "HELLO ";X

REM Variables and ifs
X=10
IF (X>0) GOTO 10

REM Control
RUN
STOP

BASIC basics
GOSUB jumps, but keeps
return location on stack
for RETURN

PRINT takes a sequence of
expressions (and we ignore
cursor moving)

POKE writes a byte to
memory (we will cheat)

We ignore command
chaining (:)

Demo
Elegant programs with GOSUB :-)

TinyBASIC
A bit of theory

Meaning of programs
Functional languages

Compositional semantics
Define meaning of in
terms of the meaning of and

e ​ +1 e ​2

e ​1 e ​2

Imperative languages
What is the meaning of PRINT "HI"?
What is the meaning of GOTO 10?
Whatever the interpreter does..
Not very good for program proofs!

 00 REM FACTORIAL IN BASIC
 10 Q=5
 20 N=1
 30 F=1
 40 IF N=Q THEN GOTO 100
 50 N=N+1
 60 F=F*N
 70 GOTO 40
100 PRINT F

Reasoning about
BASIC programs
Hoare triples

Pre-condition what is
true before the command
execution

Post-condition what is
true after the command
execution

{P}c{Q}

P

Q

Reasoning about
BASIC programs
Postconditions of a
command before have to
match preconditions of a
command after

Coming up with the right
properties is tricky!

Lab overview
TinyBASIC system step-by-step

TinyBASIC - Basic tasks
1. Add GOTO and better PRINT for infinite loop fun!

Evaluation of expressions, finding of the next line

2. Implement interactive program editing
Handle commands that edit the program code

3. Add variables and the conditional command
Needs Map<string, Value> in the program state

4. Random function and (not quite correct) POKE
To be able to generate random stars!

5. A few more functions and operators
As required by the Nim (subtraction) game

TinyBASIC - Bonus tasks
1. Add support for more elegant programs with GOSUB

Needs list<int> (stack of return line numbers) in state

2. Refactor our Nim code sample to use it
Dijkstra will still not be happy, but we avoid repetition

3. Implement an "AI" player for our Nim game
Wikipedia says this is a solved problem :-)

Closing
A tiny imperative programming system

Conclusions
A tiny interactive imperative programming system

Evaluation logic not that far from TinyML!
Imperative interpreter needs much more state
How exactly interactive editing worked?!
Parsing & interactive editing out of scope :-(

Tomáš Petříček, 309 (3rd floor)

 |


petricek@d3s.mff.cuni.cz
https://tomasp.net @tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg077

mailto:petricek@d3s.mff.cuni.cz
https://tomasp.net/
http://twitter.com/tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg077

