
NPRG077
TinyHM: Tiny Hindley-Milner
type inference

Tomáš Petříček, 309 (3rd floor)

 |


petricek@d3s.mff.cuni.cz
https://tomasp.net @tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg077

mailto:petricek@d3s.mff.cuni.cz
https://tomasp.net/
http://twitter.com/tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg077

Not a programming system!?
 An important part of the ML experience

Makes ML practical and OCaml efficient
 Learn some subtle aspects of F# type inference

Some discovered late through proofs and errors
 Good example of constraint solving...

Important technique, used in Prolog & elsewhere

Origins of ML
LCF theorem prover

ML used for writing
meta-programs to
generate proofs

Types used to ensure
the validity of proofs

Hindley-Milner
A brief history of type inference

 Hindley (1969) for Combinatory Logic
 Milner (1978) for ML with polymorphism
 Damas (1985) with formal analysis and proofs
 Since then - type classes, other extensions

Demo
Coeffects
playground

Constraint solver
code on GitHub

https://github.com/coeffects/coeffects-playground/blob/master/solver.fs
https://github.com/coeffects/coeffects-playground/blob/master/solver.fs

ML type inference
How does F# figure out the types?

Demo
Basic type inference in F#

How F# type inference works
Constraint-based

Collect & solve constraints
No annotations needed for ML!

Let polymorphism
Infer generic type of let-bound functions

Limitations in ML and F#
Value restriction for generic values
Harder to deal with .NET objects

Demo
Type inference limitations in F#

TinyHM
A bit of theory

Type systems
Typing rules
Given a typing context , the
expression has a type

Γ
e τ

The problem in general
We know some of these,
want to figure out the rest

Type systems
Type checking

Know it all. Check derivation exists!
Easy for syntax-driven rules

Type inference
Know expression. Figure out the type!
Ideally most general (best) type

Program synthesis
Not typical setting, but for completeness...

Principal type
(most general)
Best type of
an expression

Any other type of the
expression is a special
case (subtype) of it

Type inference

 How Hindely-Milner type inference works?
Produces most general type (for ML)

 How Hindely-Milner type inference breaks?
Nominal types with members, interfaces, etc.

 Alternative methods for type inference
Bidirectional - combines checking and inference

TinyHM
Constraint generation & solving

Two phase process
Generate constraints
Recursively over
expression

Solve constraints
Recursively over
constraint set

In the "Algorithm W",
the two are combined.
We separate them!

(* Basic types with
 type variables *)
type Type =
 | TyNumber
 | TyVariable of string
 | TyFunction of Type * Type
 | TyList of Type

(* Constraint specifies
 that one type should be
 unified with another *)
type Constraint =
 Type * Type

What is a constraint?
A pair of types that
should be unified

Easy or impossible
int = int -> int
int list = int list

Tricky with variables
'a = int -> 'b
'a = 'c -> int

TinyHM
Constraint generation

 Generate type and constraints recursively
 Generate new fresh type variables as needed
 Variables with new type variables in context
 Most checking done via constraints

Sketch
Generating constraints

Constraint solver structure
Simplest possible example

Peano numbers: Zero, Succ(x)
Equality constraints with variables
e.g. Succ(x) = Succ(Succ(Zero))

Creating a solver
Discharge matching constraints
Fail on mismatching constraints
Generate more for matching nested
Needs to handle substitutions...

Demo
Solving numerical constraints

Remaining work
Substitution (#1)
Replace variable in
remaining constraints

Substitution (#2)
Apply substitutions
to assigned type

Occurs check (#3)
Check for unsolvable
constraints

Demo
Substitutions and occurs check

TinyHM
Inference code structure

(* All possible types you may
 support: type variables,
 primitives and composed *)
type Type =
 | TyVariable of string
 | TyBool
 | TyUnit
 | TyNumber
 | TyFunction of Type * Type
 | TyTuple of Type * Type
 | TyUnion of Type * Type
 | TyList of Type
 | TyForall of string * Type

(* Types of known variables *)
type TypingContext =
 Map<string, Type>

Types supported
Type variables
For constraint solving!

Primitive types
Match/mismatch

Composed types
Generate one or two
new constraints

Polymorphic type
Forall (bonus)

(* Given a list of
 constraints, produce a
 list of substitutions *)
val solve :
 list<Type * Type>
 -> list<string * Type>

(* Given a typing context
 (known variables) and
 expression, return the type
 of the expression and
 list of constraints *)
val generate :
 TypingContext
 -> Expression
 -> Type * list<Type * Type>

Type inference
operations
Constraint solving
Takes constraints
Produces substitution

Constraint generating
Takes an expression
Produces constraints
Also check variables

Lab overview
Tiny Hindley-Milner step-by-step

TinyHM - Basic tasks
1. Complete the simple numerical constraint solver

Add the two missing substitutions to make it work!

2. Solving type constraints with numbers and Booleans
Follow the same structure, but now for type constraints...

3. Type inference for binary operators and conditionals
Add constraint generation for a subset of TinyML

4. Supporting more TinyML expressions
Add let, functions, application and occurs check

5. Adding simple data types
Constraint generation for tuples

TinyHM - Bonus & super tasks
1. Supporting more TinyML data types

Add type checking for discriminated unions

2. Type inference for lists - poor method
Add recursion & units and try this on list code!

3. Adding proper support for generic lists
New type, but without explicit type declarations

4. Inferring polymorphic code for let bindings
Implementing proper Hindley-Milner let-polymorphism

5. Exploring pathological cases
Did you know HM has DEXPTIME complexity?

Closing
Tiny Hindley-Milner type inference

Conclusions
Tiny Hindley-Milner type inference

A remarkable quality of ML language(s)
Cannot expect users to write types by hand!
Nice introduction to constraint solving
Much more can be done with this idea...

Tomáš Petříček, 309 (3rd floor)

 |


petricek@d3s.mff.cuni.cz
https://tomasp.net @tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg077

mailto:petricek@d3s.mff.cuni.cz
https://tomasp.net/
http://twitter.com/tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg077

