NPRGO77
TinyHM: Tiny Hindley-Milner
type Inference

Tomas Petricek, 309 (3rd floor)

™ petricek@d3s.mff.cuni.cz

© https//tomasp.net | @tomaspetricek

© https//d3s.mff.cuni.cz/teaching/nprg0/7/



mailto:petricek@d3s.mff.cuni.cz
https://tomasp.net/
http://twitter.com/tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg077

Not a programming system!?

BB Animportant part of the ML experience
Makes ML practical and OCaml efficient

A Learn some subtle aspects of F# type inference
some discovered late through proofs and errors

g Good example of constraint solving...
lmportant technigue, used in Prolog & elsewhere




Volume I, Number 1 January, 1983

Polymorphism

The ML/LCF/Hope Newsletter o~

Contents

Letter from the editors

Robin Milner: How ML evolved

Ravi Sethi: Unambiguous syntax for ML
Luca Cardelli: The functional abstract machine
SERC ML/LCF/Hope meeting at Rutherford Labs
Addenda to the Mailing List

Origins of ML

LCF theorem prover

ML used for writing
meta-programs to
generate proofs

Types used to ensure
the validity of proofs




Hindley-Milner
A brief history of type inference

‘B Hindley (1969) for Combinatory Logic

<[> Milner (1978) for ML with polymorphism

B Damas (1985) with formal analysis and proofs
4 Since then - type classes, other extensions




S]

re: Coeffects: Context-aware prog: X | +

(¢]

O B hitps//tomaspnet/coefiect @ ww oW

Practice

Choose a coeffect language from the dropdown and load a sample snippet to get started.

Dataflow language (flat) & Open sample

fun x y ->
let avg2 = funy -> (y + prev y) / 2 in
avg2 x + prev (avg2 y)

« Check snippet

In the formatted code below, you can see types of variables in a tooltip. Curried functions with multiple
parameters and function defined using let are expanded.

fun x -> fun y ->
let avg2 = funy -> (y + prev y) / 2 in
avg2 x + ) (avg2 y)

Now explore the typing derivation. Click on the judgements in the assumptions to navigate through the
typing derivation. Compare flat and structural dataflow typing for the same program!

()
uma@ 1 F (y+pr

z:nmum@1 k- funy —

(..

Demo
Coeffects
playground

Constraint solver
code on GITHUD

LT I
Charles
University



https://github.com/coeffects/coeffects-playground/blob/master/solver.fs
https://github.com/coeffects/coeffects-playground/blob/master/solver.fs

MIL type inference
How does Fif figure out the types?




Demo
Basic type inference in F




How F# type inference works

Constraint-based

e Collect & solve constraints
e NO annotations needed for ML

let twice f x = f (f x)
val twice: f: (a->'a) >x:'a->a

Full name: Inference.twice

Let polymorphism
e Infer generic type of let-bound functions

Limitations in ML and F#

e \alue restriction for generic values
e Harder to deal with NET objects




Demo
Type inference limitations in F




TinyHM
A bit of theory




Type systems

Typing rules

Given a typing context I, the
expression e has a type r

The problem in general

We know some of these,
want to figure out the rest




Type systems

Type checking

e Know It all. Check derivation exists!
e Easy for syntax-driven rules

Type inference

e Know expression. Figure out the typel
e |deally most general (best) type

Dee:ny
F\-Q:q.

ISR

Program synthesis
e Not typical setting, but for completeness...




Tw\w— Y ot dhe wwost gevieval  +ype
fou 2n erpuession @ W courexyt [
N ¢ N

Ve Theior = oy

\f

Principal type
(most general)

Best type of
an expression

Any other type of the
expression Is a special
case (subtype) of it




Type inference

How Hindely-Milner type inference works?
Produces most general type (for ML)

B How Hindely-Milner type inference breaks?
ominal types with members, interfaces, etc.

© Alternative methods for type inference
Bidirectional - combines checking and inference




TinyHM
Constraint generation & solving




LEX‘@VQ&& om e

Couttvant
| > %Qv\qvah'ou,
va\shn\m\-s cs

CoMstVilut
) QO\U(\AS

'bp\(a\\.\
., LSS+ UM

} gu\St\HM\o\A J

ﬁ_:\«lQWQA HQpes

Two phase process

(Generate constraints
Recursively over
expression

Solve constraints
Recursively over
constraint set

In the "Algorithm W',
the two are combined.
VWe separate them!




(* Basic types with
type varilables *)
type Type =
| TyNumber
| TyVariable of string
| TyFunction of Type * Type
| TyList of Type

(* Constraint specifies
that one type should be
unified with another ¥*)

type Constraint =

Type * Type

What is a constraint?

A pair of types that
should be unified

Easy or impossible
int = 1int -> 1int
int list = int list
Tricky with variables
'a = int -> 'b

'a = 'c -> int




TinyHM
Constraint generation

in M 22

Generate type and constraints recursively

~ Generate new fresh type variables as needec

Variables with new type variables in context
Most checking done via constraints




Sketch
Generating constraints




Constraint solver structure
Simplest possible example

e Peano numbers: Zero, Succ(x) . O.
e Equality constraints with variables |

(0. Succ(x) = Succ(Succ(Zero)) l F -:
Creating a solver . .‘

e Discharge matching constraints

e Fail on mismatching constraints

e (Generate more for matching nested
e Needs to handle substitutions...




Demo
Solving numerical constraints




let rec solve constraints =
match constraints with
I [0 -> [
| (Zero, Zero)::cs -> solve cs
| (Succ nl, Succ n2)::cs -> solve ((nl, n2)::cs)
| (Zero, Succ _)::_ | (Succ _, Zero)::_ ->
failwith "cannot be unified"
| (n, Variable v)::cs | (Variable v,(:)::cs ->

let substs = solve @ #3  check

(v, (m): :substs #7 sulstitiie that 'v' does
i/{ gw\u\ a}l \v\l {ov‘}l\ " Vot %p‘oea\,

lswbsty +o ‘vt vawmiaving W

ConstrItues

Remaining work

Substitution (#1)
Replace variable in
remaining constraints

Substitution (#2)
Apply substitutions
to gassigned type

Occurs check (#3)
Check for unsolvable
constraints




Demo
Substitutions and occurs check




TinyHM
Inference code structure




(* All possible types you may T\Ipes SupportEd

support: type variables,
primitives and composed *)

Type variables

type Type = B - .
| TyvVariable of string —or constraint solving!
TyBool
TyUnit OriA it
TyNumber rimitive types

|
|
| .
| TyFunction of Type * Type \Aatcﬂj/rrngrrE}Ujh
| TyTuple of Type * Type

|

|

|

TyUnion of Type * Type
TyList of Type Composed types
TyForall of string * Type Generate one or two
(* Types of known variables *) rW@VV<3CNWSTraiﬂTS
type TypingContext =
Map<string, Type> Polymorphic type

Forall (bonus)




(* Given a list of
constraints, produce a
list of substitutions ¥*)

val solve :

list<Type * Type>
-> list<string * Type>

(* Given a typing context
(known wvariables) and
expression, return the type
of the expression and
list of constraints *)

val generate :

TypingContext
-> Expression
-> Type * list<Type * Type>

Type inference
operations

Constraint solving
Takes constraints
Produces substitution

Constraint generating
Takes an expression
Produces constraints
Also check variables




Lab overview
Tiny Hindley-Milner step-by-step




TinyHM - Basic tasks

1. Complete the simple numerical constraint solver

Add the two missing s

Jpstitutions to make it work!

2. Solving type constraints with numbers and Booleans
Follow the same structure, but now for type constraints...

3. Type inference for binary operators and conditionals
Add constraint generation for a subset of TinyML

4. Supporting more Tiny
Add let, functions, app

5. Adding simple data ty
Constraint generation

VIL expressions
ication and occurs check

DES
for tuples




TinyHM - Bonus & super tasks

1. Supporting more TinyML data types
Add type checking for discriminated unions

2. Type inference for lists - poor method
Add recursion & units and try this on list codel

3. Adding proper support for generic lists
New type, but without explicit type declarations

4. Inferring polymorphic code for let bindings
implementing proper Hindley-Milner let-polymorphism

5. Exploring pathological cases
Did you know HM has DEXPTIME complexity?




Closing
Tiny Hindley-Milner type inference




Conclusions

Tiny Hindley-Milner type inference

o Aremarkable quality of ML language(s)

e Cannot expect users to write types by hand!
e Nice introduction to constraint solving

e Much more can be done with this idea...

Tomas Petricek, 309 (3rd floor)

™ petricek@d3s.mff.cuni.cz

© https//tomasp.net | @tomaspetricek

© https//d3s.mff.cuni.cz/teaching/nprg0/7/



mailto:petricek@d3s.mff.cuni.cz
https://tomasp.net/
http://twitter.com/tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg077




