
NPRG077
TinyProlog: Tiny declarative logic
programming language

Tomáš Petříček, 309 (3rd �oor)
✉
 |

petricek@d3s.mff.cuni.cz
https://tomasp.net @tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg077

mailto:petricek@d3s.mff.cuni.cz
https://tomasp.net/
http://twitter.com/tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg077

Logic programming

 Declarative style - specify what, but not how
 Programs consists of facts and rules
 Evaluation by clever inference engine
 Prolog, Datalog and basis of other systems
 Origins in AI and natural language

Type inference

Program analysis
Generated constraints
Uni�cation of types
Infer type assignment
Uni�cation + substitution

From inference to programming
Logic programming

Program evaluation
Handwritten programs
Uni�cation of terms
Infer variable assignment
Uni�cation + substitution

A bit of history
Natural language
processing in the late
1960s & early 1970s

SHRDLU, PLANNER

"Find a block which is
taller than the one you
are holding and put it
into the box."

Prolog then and now
Alain Colmerauer, Marseilles (1972)

Natural language processing
Automatic theorem proving

Fifth generation systems (1980s)
10 year initiative in Japan
Epoch-making knowledge processing

Prolog (and Datalog) today
Used in real-world in specialized domains
Basic of many reasoning & solving systems

TinyProlog
Logic programming by example

Prolog "Hello world"
Family tree querying

Simple database querying
Search for data patterns
Grandparent (parent of a parent)
Father (parent who is male)

List processing
Linked lists with "cons" and "nil"
Matching lists with patterns
Many functions become multi-purpose

Demo
Family tree and lists

Magic squares
Naive method
Generate & test
all permutations

Better approaches
Try adding only
reasonable options

Naive is �ne for us!

Demo
Generating magic squares

TinyProlog
A bit of theory

Model of knowledge
Closed world assumption

Only declared facts are true
No unknown children exist!
Shapes the semantics of Prolog

Negation in Prolog
Yes means provably true
No means not provably true
False only in a closed world

Theory behind resolution
Prolog programs as logic clauses

Horn clause:
Equivalent:

A ← B ∧1 B ∧2 … ∧ B n

A ∨ ¬B ∨1 ¬B ∨2 … ∨ ¬B n

SLD resolution in Prolog
Sound and refutation-complete
resolution for Horn clauses
Will prove 'false' if possible

Variables in Prolog clauses
Universally quanti�ed over formula, existentially over body

∀x∀y(grandparent(x, y) ← ∃z(parent(x, z) ∧ parent(z, y)))

Transformed using standard logical operations

∀x∀y(grandparent(x, y) ∨ ¬∃z(parent(x, z) ∧ parent(z, y)))
∀x∀y(grandparent(x, y) ∨ ∀z¬(parent(x, z) ∧ parent(z, y)))
∀x∀y∀z(grandparent(x, y) ∨ ¬parent(x, z) ∨ ¬parent(z, y))

We need to use free variables when applying rule!

Numbers
Calculating inside Prolog

 Peano arithmetic encoded as zero & successor
 Constraint Logic Programming (CLP) extensions
 CLP(Z) adds a specialized solver for integers
 CLP(B), CLP(Q), CLP(R) and more

Cyclic terms and occurs check
Occurs check

Avoid terms of the form A = f(A)
Supports rational trees (cyclic terms)
Not checking is faster, but not right

Practical Prolog
Some operations can fail:
A = 1 + A, B is A.
Checks can be turned on:
set_prolog_flag(occurs_check, true).`

Demo
Enabling occurs check

TinyProlog
Implementation structure

TinyProlog
programs
Program is a list of
clauses which are:

1) Rules (head + body)
2) Facts (head)

A term can be:

1) Variable
2) Atom
3) Predicate

(* Recursive term definition *)
type Term =
 | Atom of string
 | Variable of string
 | Predicate of
 string * Term list
 | Call of Term * Term list

(* Facts have empty Body *)
type Clause =
 { Head : Term
 Body : Term list }

(* Create a fact clause *)
let fact p =
 { Head = p; Body = [] }

(* Create a rule clause *)
let rule p b =
 { Head = p; Body = b }

TinyProlog
programs
Encoded as F# types!

Atom vs. variable

Atom is a single data
item, thing that exists.

Variable is a place -
holder that we want to
assign a term to.

Prolog resolution logic
 Start with user query as the goal

Single (or multiple) term(s) with unbound variables
 Find applicable rule/fact by matching its head

Uni�cation to check if the rule can be applied
 Generate substitution from the matching

Substitution generated by uni�cation process
 Add goals based on the rule body

Apply substitution and repeat until all goals solved

The unification process
Tiny implementation

Similar to our type inference code!
unify and unifyLists functions
Generate substitution for variables

Used in Prolog context
Same 2 uses of substitution
Occurs check done optionally
Use fresh set of variables when
reusing rules from program database!

let rec unifyLists l1 l2 =
 match l1, l2 with
 | [], [] ->
 (* empty substitution*)
 | h1::t1, h2::t2 ->
 match unify h1 h2 with
 | Some(s) -> (*
 1. substitution 's' to
 unify 'h1' and 'h2'
 2. now unifiy 't1' and 't2'
 recursively & compose
 3. if not possible, fail *)
 | _ -> (* fail *)
 | _ -> (* fail *)

and unify t1 t2 =
 match t1, t2 with
 | Atom(a1), Atom(a2) -> (* does 'a1' match 'a2'? *)
 | Variable(v), t | t, Variable(v) ->
 (* return a substitution *)
 | Predicate(p1, args1), Predicate(p2, args2) ->
 (* if p1 = p2, unify arguments recursively *)
 | _ -> None

Unification logic
Split into two functions
for better readability

unify matches terms

unifyLists matches
two lists using unify

% Number: 0
zero

% Number: 1
one = s(zero)

% Number: 5
five = s(s(s(s(s(zero)))))

% Empty list
empty

% List [1]
cons(one, empty)

% List [1; 5]
cons(one, cons(five, empty))

Adding support for
numbers and lists
Nothing extra is needed!

Good enough for a tiny
implementation.

Terribly ine�cient and
limited if you want to
calculate anything!

The F# language
Useful advanced features

Advanced F# features
Active patterns

Custom patterns for use in match
Match number with Odd or Even
Recognize special forms of terms
Complete or partial patterns

Sequence expressions
Write code that generates a sequence of items
Comprehensions (Haskell), generators (JS), ...
Lazy seq {..} or eager [..] or arrays [|..|]

Demo
Advanced F# features

Lab overview
TinyProlog system step-by-step

TinyProlog - Basic tasks
1. Implementing basic uni�cation of terms

Recursively match atoms, variables and predicates

2. Composing and applying substitutions
To handle multiple occurrences of a variable correctly

3. Searching clauses & variable renaming
Find applicable rules and relevant facts in program

4. Generating and proving goals recursively
The key trick! Generate and solve goals in a loop

5. Adding numbers to TinyProlog
Representing, calculating and pretty printing

TinyProlog - Bonus and super tasks
1. Lazy search and support for lists

Refactoring for readability and more pretty printing

2. Generating magic squares in TinyProlog
In which we �nd out how slow our implementation is :-)

3. Implementing call and functional maplist
Adding special predicate for higher-order programming

4. Adding support for occurs checks
If you want to make it slower and more correct

5. Implementing Prolog-style cut operator
Super-bonus if you are into Prolog programming...

Closing
A tiny logic programming language

Conclusions
A tiny declarative logic programming language

Remarkably similar to ML type inference!
This is not a coincidence...
Evaluation as search, not a sequence of steps
Much work needed to make this practical

Tomáš Petříček, 309 (3rd �oor)
✉
 |

petricek@d3s.mff.cuni.cz
https://tomasp.net @tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg077

mailto:petricek@d3s.mff.cuni.cz
https://tomasp.net/
http://twitter.com/tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg077

