NPRGO77

TinySelf: Tiny prototype-based
object-oriented language

Tomas Petricek, 309 (3rd floor)

™ petricek@d3s.mff.cuni.cz

© https//tomasp.net | @tomaspetricek

© https//d3s.mff.cuni.cz/teaching/nprg0/7/

mailto:petricek@d3s.mff.cuni.cz
https://tomasp.net/
http://twitter.com/tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg077

CONCEPTS IN
PROGRAMMING
LANGUAGES

John C. Mitchell

Object-orientation

Dynamic lookup - object
chooses how to respond

Abstraction - object state
can be hidden from user

Subtyping - any compatible
object can be used

Inheritance - reuse to
implement a new object

Brief history

Origins of object
orientation
(1960s-70s)

Algol-based and
scientific Simula

Tools for thought
and messaging in
Smalltalk

Conceptual
development
(1980s)

Rigorous Eiffel
and ‘serious’ C++

Prototypes ana
Materializec
objects in Self

Commercial
refinement
(1990s-2000s)

Class-pased safe
Java and C#

Prototypes in
JavaScript anc
typed TypeScript

Why TinySelf?

‘Pure” object-orientation

e Simple, uniform system
o Everything is an object (for real) Self

e Simpler than class-based Smalltalk

Shows the potential of objects

e Not Java-style organization of code
e Objects and graphical interfaces!
e Objects with introspection and debugging!

-
4 an atom
“parent* irags @om =
“center a poited68=(2393481) 1
“radins i3

velnut:,i' apomz-:4ﬂd:-{—5@4j:

Energy > 10 ifTrue: [
stop Eesi paint named: “red”
1 False: [

palnt named: “gray”

B Ras i Moy ph Stxe
B fling 0w

Figure 9. The user has selected one atom on which to experiment. The user
changes the “rawColor” slot from a computed to a stored value by editing direct-
ly in the atom’s outliner.

Self & Morphic user
interface framework
Visual programming

Programming by
graphically manipulating
objects on screen

Direct programming

Objects on screen are
opjects in the system

Demo
(Not so) Tiny Smalltalk

TinySelf
Scope of the implementation

Prototype-based multiple inheritance
\Vethods with simple interpreted code
EXplaining basic runtime structures

naccurate interpreter in "Self style’

B &0V «

Sketch of what Ul framework might look like

TinySelf
Self programming paradigm

Everything is an object

Really everything

e Objects, methods, lambdas,
expressions, activation records

e Object has lists of slots and
optionally contains code

Obect = slots* + code?

e Data object has just slots

e Method object has code

e Closure has code and slots!

e Data object has methods as slots

WWWWWW

storeStringNeeds random(57836) =

multiplier

Module:

ppppp

l]isplaoement; disp

uuuuuu
Multiplier: mul
Displacement: disp

EEEEE

// Object consists of zero or more
// slots and optionally code
type Objekt =
{ mutable Code : Objekt option
mutable Slots : Slot list }

// A slot has name and contents;
// Some slots are parents
and Slot =
{ Name : string
Contents : Objekt
IsParent : bool }

TinySelf objects

Object consists of zero
or more slots and
optional code!

In Self parent slot
names end with *

TinySelf objects can
also be special things

MOG’'S

Family of &g
Cats |

~
L ap i O
- Fme Lo

Judith Kerr

a8 =
5 T

2iss

L2

Charles
University

|

N

PA‘(Q\M: X = o

wWM=JLqu//////”

\
SO\L\MX = Meow | ‘

P‘&\re.vw* = ./
. *
{’\'dr\OV\%-\ = o/

\ .
nawme = Chehive cat!

M

book = 'Alice. W
Woudevleud'

Prototypes and slots

Message send looks at
target object first, then
searches parents

cheshire name // OK
cheshire book // OK

larry name // OK
larry book // Fail

Message send fail if none
or multiple slots found

Demo
Representing cats in Self

"""Data object with name"""
(| book = '"Alice in Wonderland'

"""Method with some code"""
(self name printLine)

"""Data object with parent
slot and a 'speak' method"""

(| parent* = cat
name = 'Cheshire Cat'
speak = (

self sound printLine

)
)

"""Data access or method call"""

cheshire name
cheshire speak

)

Message sending

Lookup slot with a
matching name, then:

e [f |t contains data
opject, it is returned

o |T it contains method,
the method is called

Assignment slots and
special calls differ...

Demo
Hello world, traits and cloning

The power of simplicity...

Simplicity and uniformity

e All objects can be opened!
e Activation records for debugging m m

e Self-sustainable system

Morphic framework

e [NiNQS ON screen are objects!
e Object with a morph prototype can draw itself
e User interface is just morphs - no special codel

Demo
Morphic and graphical objects

The F# language
What we need for TinySelt

Mutable records in F#

Defining mutable objects

e Records with mutable flelds
e \\e could use classes too

Equality and records

o Still use structural equality by default
e Not If records (can) contain functions!
e ReferenceEquality attribute to override

type Person = MUtable I‘ECOI‘dS

{ mutable Name : string
mutable Book : string option } Helper funCtionS
let setName n p = Make code a bit nicer
p.Name <- n :
let setBook b p = Can SLW)DCNT > pule

p.Book <- Some b

| Pattern matching
let x = { Name = "Rill"; k = None }

x |> setName "William" Same as immutable
X |> setBook "Alice in Wonderland" FQKje(jata eXiraCﬁKDﬂ|

match x with
| { Book = Some book } ->

printfn "%s likes %$s" x.Name book
>

printfn "%s 1is sad :—- (" x.Name

Demo
Working with mutable records

TinySelf programming style

Different than before! Helper methods

Everything is an Objekt Simplify object construction
Type definition stays et makestring o -

We change what we putint - marepstaonteet b renten
Uniformity has drawbacks makeSlot Mvalun

(makeSpecial (String s))

E\/@l’ythlﬂg typ@ Ch@CkS' makeAssignmentSlot "value"
]

TinySelf
Key implementation tricks

TinySelf
Key Implementation tricks

L) How Self puts things on screen!

' Slot lookup in parent objects

N Message send to method/data slots
B Activation records and calling

<[> How TinySelf represents expressions

How Self-like systems
put things on screen?

Escape hatch is a must
. Smalltalk system calls
e Self primitive calls

(primitives primitivelist)

TinySelf special objects
Primitive string values
Native F# methods

// Special TinySelf objects!
type Special =

| String of string

| Native of (Objekt -> Objekt)

// Optionally special object
and Objekt =
{ mutable Code : Objekt option
mutable Special : Special option
mutable Slots : Slot list }

// Code to clone an object
let cloneCode =

{ Slots = []; Code = None
Special = Some (Native (fun arcd ->
lookupSlotValue "self*" arcd
|> cloneObject)) 1}

// Method with special code object
let cloneMethod =
{ Slots = []; Special = None;
Code = Some cloneCode }

Special objects

String values

No other way to
represent strings!

Native methods

~1# function taking
‘activation record” anc
returning the result

Used as method code

L2

Charles
University

TinySelf
L ookup and message sending

Input:

obj, the object being searched for matching slots
sel, the message selector
V, the set of objects already visited along this path

Output:
M, the set of matching slots

Algorithm:

if obj e V
then M « ¢
else M ¢« {s € obj | s.name = sel}
if M = &g then M « parent_lookup(obj, sel, V) end
end
return M

Where parent_lookup(obj, sel, V) is defined as follows:

P < {s € obj | s.isParent}
M < v lookup(s.contents, sel, V v {obj})
sepP

return M

Slot lookup logic

1) Search target object

2) Search parents and
Union the results

3) Avoid infinite loops!

L2

Charles
University

Message sending logic

Self handbook TinySelf translation

A normal send does a look- 1. Find slot using lookup!

up to obtain the target slot; 2. Check it is exactly one
3. If there is no code, return it

A |f thereis code, runit...
o Create activation record
o Run (non-)native code

If the slot contains a data
object, then the data object
IS simply returned.

If the slot contains a
method an activation Is
created and run.

@ o

yrearing = ‘Hello!

Qveet = ‘

(sdb queeting priar,
e print,

W prinr)

|

@ \ello gyeet: 'NorGo3?

name = ‘NPRGO?L)

R

RU¥ = \'J
'&VQS* =

((sdf aveting vk,

nwme print,

W' prinr) B

Activation record

Lookup In activation record
to get all our code needs!

Clone of method
't could have datal

Self as parent
Access target's slots!

Arguments as parent
AcCcess arguments!

Representing TinySelf code

AST is a tree of objects

e All nodes have eval method
e Called with activation as argument
e Objects store sub-expressions etc.

Benefits and drawbacks

e Differs from normal Self or Smalltalk!
e Much simpler than compiled methods

(st aveeting fving,
nawme prine,

V' priwr)

e Bewarel Values and expressions are Objekt!

Qtving = 'Hello would'
ual = (...)

|

VQCRAWRYS = 1

Wity = ‘ \ow‘vw‘

Q\m\t ()

e

Simple expression

'Hello world' print

Send expression
Recelver, message,
arguments to be used

String expression
String value to be returned

To make this nicer, put eval
code into prototypes...

Lab overview
TinySelf system step-by-step

TinySelf - Basic tasks

1. Implementing slot lookup
Traversing the prototype hierarchy to find slots

2. Implementing (basic) message sending
Handling of data objects and (native) methods

3. Cloning and mutating TinySelf objects
Assignment slots and clonable trait

4. Representing & interpreting TinySelf expressions
Creating expression objects with eval method

TinySelf - Bonus and super tasks

1. Arguments and sequencing of expressions
Adding more types of expressions to TinySelf

7. Booleans and 'if' as a message send!
Booleans are just objects with an if method

3. Objects as lists and more expressions
Adding more infrastructure before the next step...

4. Creating web-based visualizers
A small step towards TinyMorphic framework

Closing
A tiny prototype-based OO language

CONCEPTS IN
PROGRAMMING
LANGUAGES

John C. Mitchell

TinySelf and 00

Dynamic lookup
~ind method using lookup

Abstraction
No private slots in TinySelf

Subtyping
Object with required slots

Inheritance
By setting a parent slot

Class: Class (open)
Slots

enclosing (open)
methods (open)
name (open)
parent (open)

print ['Hello worldI"x| + X

Workspace
Code
prin il worias] -

Output

Hello world!
Commands
Run!
x0=
<0<l
x0=
xte{fa] el ﬁ L + | reflectObject b » | getClass + |+ " getNarme + |
hirml - £
. oy
x3=|[2x] link get_p + X| reflectObject +X getClass + X|+ A
]
html ['div"x ;d&: +
X x X
<1e| i el ﬁ .
.
<O-frame x
<L
x2=(7x] html @ E get_p + X reflectObject +X| getSlots ."‘ map ([name value ||[7x] html @ x2:[2 link X

3"
.

What is missing

Self-sustainable
Complete basic library
Reflection capabllities

Reflection via mirrors
Irror objects

nspect & modify

Done In Nanospeak

L2

Charles
University

Conclusions

A tiny prototype-based object-oriented

anguage

e Basic logic of object-oriented languages

e Shows how 1o build self-sustainable system

e Different implementation - everything is object
e Hard to implement! Need debuggers, not types

Tomas Petricek, 309 (3rd floor)

™ petricek@d3s.mff.cuni.cz

© https//tomasp.net | @tomaspetricek

© https//d3s.mff.cuni.cz/teaching/nprg0/7/

mailto:petricek@d3s.mff.cuni.cz
https://tomasp.net/
http://twitter.com/tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg077

