NPRGO77

TinyExcel: Tiny incremental
spreadsheet system

Tomas Petricek, 309 (3rd floor)

™ petricek@d3s.mff.cuni.cz

© https//tomasp.net | @tomaspetricek

© https//d3s.mff.cuni.cz/teaching/nprg0/7/

mailto:petricek@d3s.mff.cuni.cz
https://tomasp.net/
http://twitter.com/tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg077

|s Excel real programming?

It is Turing-complete! It is widely-used!
Encoded using ‘drag-down’ Simple, but can do a lot...

) A Thenightmareisreal: | X % Excel Turing Machine— X =~ + = o X () | A Thenightmareisreal: " X | T Excel TuringMachine- X 4+ Vv = o X
<« [¢] O 8 &= https//wwweliennecor B 110% ¥ ® L @ 8 = <« © O 8 httpsy,

= a The A Register’ Q
Felienne's blog SOFTWARE 1330

H 1 !
Excel Turing Machine The nightmare !s real: 'Excel formula_s are the
September 19, 2013 by felienne world's most widely used programming
language,’ says Microsoft

theregistercom B 110% ¥ Y © 8§ =

Zda-

So here's LAMBDA to make custom functions out of those
formulas

A Richard Speed Fri 4 Dec 2020 ' 20:06 UTC

Microsoft will let users create custom functions in Excel using the number
wrangler's own formula language.

"Excel formulas are the world's most widely used programming language, yet one
of the more basic principles in programming has been missing, and that is the
ability to use the formula language to define your own re-usable functions," said

Microsoft. m

The addition is long overdue; those feeling a misplaced sense of déja vu are likely Charles
thinking of functions implemented in the spreadsheet using an entirely different University
language, such as JavaScript or (heaven forbid) Visual Basic for Applications.

foa | 3 o@ o

TinyExcel
What makes spreadsheets interesting?

4e2 \ost accessible programming tools!
iy Program in a two-dimensional space

@ Cdit and view in the same environment
~ Automatic and live sheet recomputation

> Interaction

-> Notation

> Conceptual structure

- Customizability

- Smalltalk

0 o
Integrated execution and editing
mode, giving feedback at runtime.
Abstractions constructed using.
objects are accessible viaa
browser.

- UNIX

»0axo
Edit, build and execution modes
with feedback in each step.
[Abstractions include files, y

> Spreadsheets
C b o

Live update when editing

Formulas are always accessible.

-> Web platform

Edit and refresh mode with state
visible in DOM browser and live

-> Notebooks

Feedback and atcell

-> Haskell

compilation and

level. Programmatic abstractions

land processes. Shell allows going
from concrete to abstract.

tion by
concrete computation (drag down)

or using macros.

C notations with

Primary source code notation
graphical structure editor for
object structure. Secondary
overlapping notations can be
developed in-system. Small
language.

Small number of unified concepts
("everything is an object”) at odds
with outside world. Everything is
composed from small number of
primitives, but limits convenience.
Structural commonality.

System can be customized at
runtime. Much of the system s
written in itself and can be
modified from within itself.
Extensibility achieved via object-

Primary language)
with variety of secondary (file
system, shell scripts), alledited via
text editor. Admits concise but
error-prone notations.

Files provide *large” common
concepts, but details are open.
Scripting based on small
composable tools. Standard
libraries and tools offer
convenience.

Explicit stage distinction between

graphical grid, formulas and
macros, allowing gradually richer
interactions. Different non-
uniform notation at each level,

Limited number of domain-specific|
concepts (sheet, formula, macro).
Computation can be composed
and formulas constructed using
many convenient built-ins.
Structural commonality.

Documents are editable during

developer tools. Cod
are closed, but style abstractions
more transparent.

Diversity of text-based highly
non-uniform notations (HTML,
JavaScript, €SS) with limited
structure editing for debugging
(DOM).

improvised mix of open "large"
concepts (HTTP) and specific ones
(DOM). Many convenient libraries

possible, but manual approach
by copying or modifying code is
common.

execution modes with feedback at
each level. Abstractions from first-
principles (functions, type classes)
are opaque during execution.

i with code,
text and outputs, embedded ina
notebook as complementing
notations. Document model
where notebook is a st of cells.
Notebook and cells as "large”
concepts with code notions
(Python) as "small” concepts

v e code notation with
secondary infrastructure
notations, edited as text. Rich
[mostly explicit language with
variety of extensions.

Small number of unified concepts
(functions, expressions) at odds
with outside world. Composability

and tools with low
and varying composability.

Basic infrastructure (browser,

C primarily at code
level, but not notebook level.
Convenient libraries and tools.

System is fixed, but can

at d type level.
Limited set of convenience tools.
Type classes for commonality.

Language s fixed, but can

lexecution and building, but
is written using its own notation (C|
language) and can be modified and
rebuilt from within itself. Limited

oriented

> Complexity

> Errors

Factoring using a rich class-based
system covering system and
application-level features. Basic
automation (garbage collection)
with more possible through
libraries & via reflection.

Errors detected at runtime and
can be corrected immediately in

at runtime.

Defines low-level infrastructure
(hardware abstractions) and large
object structure (files, processes);

but If
be modified. Adding only appends
computations, but cannot modify
existing ones.

Fixed structure of formulas and
grid. High-level language for

formulas with automated re-

fixed. Individual
applications can have a large
degree of modifiability (via
dynamic scripting). €SS provides
powerful addressing.

Factoring via high-level languages
(Javacript), rule-based systems
(CSS) and standard interfaces
(W3c Automation

'small-scale factoring and
lautomation left to the user and/or
application.

Error detection left to the system
user. Low-level primitives make it

interact
Further detection possible via

possible to tion
land response via custom

-> Adoptability

testing tool:
Steep learning curve, but uniform
design makes understanding
reusable. End-users can
progressively become

Active community,

but closed world and limited
packages.

Requires background knowledge
(system-level), but supported by
active community. Openness
allows integration with the

external world; diversity of
« Jabl

example provides next-step
automation.

Slips caught at runtime, but no
support for checking lapses or
mistakes. Provides immediate
feedback, making quick error
correction possible.

Domain-focus on specific needs

at basic level (garbage collection)

be modified as ops
source project with community.
Programs cannot modify
themselves, notebook or system
at runtime.

Complexity relegated to complex
libraries (pandas, ML libraries,
etc) created outside the system.
Basic language automation (GC)
but

and in declarative domains (CSS).

Generally aims to do the best
thing possible (automatic
recovery) on errors. Direct error
correction can be done in browser
tools, but not permanent.

Web has a diversity of

PP
learning End-users can
progressively become

No packaging
but wide range of

samples and community available.

learnability is mainly
achieved through community. The
diversified web ecosystem allows

in standard Jupyter setup.

Slips caught at runtime. Limited
checking of lapses or domain-
specific mistakes. REPL-
evaluation provides quick
feedback, making quick error
correction possible.

Learnability is supported by focus
on a specific domain, graphical
interface and community.
Notebooks can import a range of

for the integration
systems.

v and
integrate with external systems.

be modified as open-
source project with community.
Programs cannot modify
themselves nor the system. Type
classes allow extensibility at
compile-time.

Complexity factored using math-
inspired type class hierarchies
with type system support.

| Automates memory management
(GO) and evaluation order
(laziness).

Strict error checking eliminates
lapes and slips and some mistakes
at compile time. Error correction
done in text editor, based on non-
trivial error messages

Learning requires background
knowledge (mathematics), but is
supported by community and
uniform design. Closed
ecosystem, but with community
and diversity of packages.

Technical Di-
mensions of
Programming

Systems
Jakubovic et al., 2023

What matters about
stateful interactive
systems?

L2

Charles
University

Demo
Excel data exploration basics

Abstraction is hard

W\\“ w Yais ?

L]
Way e P
w VALY

Drag-down for formulas
makes abstraction easy

p You only ever work with
o oon o SrenEBe™ L concrete values
}

©coo

Always see sample inputs

dih T o+ the & verify sample outputs
ovdRy anm&?

TinyExcel
Scope of the tiny version

B Two-dimensional space with references
4 'Drag-down'to apply formula to a column
B Relative and absolute cell references

S Incremental computational engine

TinyExcel
Technical dimensions

The good and the bad

High usability

e Live exploratory programming
e \Work with concrete values
e |earning from examples

High-profile errors

e 'Growth in the time of debt” errors
e SEPTZ MARCHT gene names
(Septin, Membrane-Associated Ring Finger)

Confusing terminology

Q, Exploratory programming
Write, run, rethink with easy editing

P Live programming
See results of your program immediately

&3 Live coding
Run immediately, typically audio performance

[l Interactive programming
\Viodify stateful programming system

HS -8~ - continents - Excel
File Home Insert Pagelayout Formulas Data Review View Help @ Tell me what you want to do
E4 X « fr | =SUM(E4:E9
C D 5 F
1 _l
2 _l
3 | Continent Population (2024) Area (kmz)
4 Asia 4,753,079,726 31,033,131
5 | Africa 1,460,481,772 29,648,481
6 Europe 740,433,713 22,134,710
7 North America 604,182,517 21,330,000
8 | South America 439,719,009 17,461,112
9 | Australia/Oceania 46,004,866 8,486,460
10 Antarctica 0 13,720,000
11 =SUM(E4:E9) |
12
13 |
14
LSheett | @ (] \
| (& Accessibility: Good to go 3] o -+ %

Spreadsheets are...

Exploratory - easy to
fiddle with data

Live - you see results
(almost) immediately

L2

Charles
University

Concreteness

Unimate industrial
robot (1961)

Program by moving
the robotic hand

Macro recording
but done right

Concrete programming

Programming by demonstration

e [hink macro recording
e How 10 generalize & re-apply
e Drag down' in spreadsheets

Programming by example | pe——

eeeeeeeeee

eeeeeeee

e Generalize from input/output list | | |

aaaaaaaaaaaaaaaa

e Search for fitting program =
e Also FlashFill in Excel

Demo
FlashFill in Excel

How people learn Excel

From existing spreadsheets

e \/iew source of formulas
e | carn how functions work
e | Ogic needs to be visible!

Going to the expert

e Every office has Excel 'quru’
e Needed for harder aspects

Africa
EEEEEE
North America

e Needed for use that does not have a "trace’

W o Ny n s W N =

The grid power!

Humans are good at
working with space

Programs are not
typically spatial...

Grid is limiting, but
powerful concept

TinyExcel
_earning from spreadsheets?

& More programming for non-programmers?

= |Immediate live feedback is great!

e Abstractions from working with concrete values
1% Programs should exist in understandable space

CREATEBY

ABSTRACTING

Learning programming is learning abstraction.

A computer program that is just a list of fixed instructions -- draw a rectangle here, then a
triangle there -- is easy enough to write. Easy to follow, easy to understand.

rect(80, 80, 40, 25);
triangle(80, 86, 100, 60, 120, 80);

It also makes no sense at all. It would be much easier to simply draw that house by hand. What
is the point of learning to "code", if it's just a way of getting the computer to do things that are
easier to do directly?

Because code can be generalized beyond that specific case. We can change the program so it
draws the house anywhere we ask. We can change the program to draw many houses, and
change it again so that houses can have different heights. Critically, we can draw all these
different houses from a single description.

function house (x,y) {
rect(x, y, 40, 105 - y);
triangle(x, y, 20 + x, -20 + vy, 40 + x, y);

}
house(34, 68); ‘

house(79, 80);
house(125, 55);

Could "normal”
programming be
more like this?

Demos by Bret Victor

Learnable Program-
Ming: Designing a
programming system
for understanding
programs (online

L2

Charles
University

http://worrydream.com/LearnableProgramming/

TinyExcel
Implementation techniques

Continent

Population (2024)

Area (kmz)

Population (%)

Asia

Africa

Europe

North America
South America
Australia/Oceania
Antarctica

World

4,753,079,726
1,460,481,772
740,433,713
604,182,517
439,719,009
46,004,866

0

EM

8,043,901,603

31,033,131
29,648,481
22,134,710
21,330,000
17,461,112

8,486,450

3720,000
143,813,894

Inter-cell
dependencies

N what order to
evaluate sheet?

Avoid evaluating
a cell repeatedly!

VWhat to re-evaluate
when cells change?

L2

Charles
University

Dependency graphs

Dependencies via cell
and range references

Cyclic dependencies

Excel does a fixed maximal
number of iterations

Explicit or implicit in code

Graph data structure vs.
event listeners

Reactive programming

Different implementations

e Functional Reactive Programming
e ReactiveX (rxjs, RxJava, Rx.Net)
e Elm software architecture

Implementation techniques

e Push-based - Changes propagated from source
e Pull-based - Update required by the consumer
e Builder-based - Computation to be instantiated

TinyExcel
'mplementation techniques

M \aive non-cached recursive starting point
4 Cecllis as graph node with "Updated” event
ke Depending nodes listen, recompute & notify
@ Tricky error and update handling...

The F# language
\What we need for Excel

What we need to write Excel

Event handling

o F# events are objects (values)
e Cantrigger & register handlers

More tips & tricks

e Collection processing
e Fancy patterns and active patterns

Finally a user interface?

e Would be nice, but setup costs hignh...
o Write sheet as HTML document & open

4

Generating lists

List comprehensions with the yield keyword

let worldInfo =

[yield addr "Al", Const(String "Continent™)
yield addr "B1", Const (String "Population (thousands)™)
for i, (cont, pop) 1n Seqg.indexed continents do
yield addr ("A"+string(i+2)), Const(String cont)
yield addr ("B"+string(it+2)), Const (Number pop)]

e yield adds another item to the list

e for and other constructs to write generators
e Seq.indexed trick to get item index

Demo
Extending the List module

// Decares event value
let evt = Event<int> ()

// Trigger event
evt.Trigger (1)
evt.Trigger (2)
evt.Trigger (3)

// Object for listening
evt.Publish

// Listen and print
evt.Publish.Add (fun n ->
printfn "Got: %d" n)

FH# Events

Regular F# objects
Not special constructs

Corresond to
TIObservable INn C#

Add and remove
nandlers using
AddHandler and
RemoveHandler

Demo
Working with F# events

Writing and opening HTML files

If you know C#, you can use other options too!

let demo () =
let £ = Path.GetTempFileName () + ".html"

use wr = new StreamWriter (File.OpenWrite(f))
wr.Write ("""<html><body><hl>Hello world!</hl></body></html>""")

wr.Close ()
Process.Start (f)

e GetTempFileName gives you a file in TEMP folder
e use t0 Make sure stream gets closed on error
* Process.Start can (sometimes) open files too

TinyExcel
Implementation structure

// In column, row format
// e.g. Al becomes (1, 1)
type Address = int * int

// Note error is a value!
type Value =

| Number of int

| String of string

| Error of string

// Operators are functions
type Expr =
| Const of Value
| Reference of Address
| Function of string * Expr list

// Using immutable F# map
type Sheet = Map<Address, Expr>

Simple start

Standard ML-like
expression language

References (insteac
of variables) are
evaluated recursively

Sheet maps (filled)
addresses to
expressions

// Expression and value are Ver5|0n Wlth the

// mutable. Updated triggered
// when they change. dependency graph
type CellNode =

{ mutable Value : Value

mutable Expr : Expr value eValuated

Updated : Event<unit> } on CT@EﬁKDf]VVh“Sh
// Immutable map prevents circular refs
// of mutable cells .
type LiveSheet = Expression stored

Map<Address, CellNode> | | :
drag down' expansion

Updated event
to notify of changes

Advanced extensions

Ranges and array values

type Value = // (...)

| Array of Value list

000000000

888888888888888

type Expr = // (...)
| Range of Address * Address

Absolute addresses

type Index = Fixed of int | Normal of int
type RawAddress = int * int
type Address = Index * Index

Lab overview
TinyExcel step-by-step

TinyExcel - Basic tasks

1. Simple expression evaluator
With grid references by cell address

7. 'Drag down" formula expanding
Relocating relative references in formula

3. Reactive event-based structure
Refactoring code to use graph nodes

4. Reactive event-based computation
Adding update event hanadling

5. Rendering sheets as HTML pages
First step towards a user interface

TinyExcel - Bonus and super tasks

1. Absolute and relative addresses
Alongside with improved ‘drag down’

2. Adding range selection and array values
Reqguired for the SUM function

3. Adding change visualization
Tracking and showing what has changed

4. Full support for live editing
Updating dependencies in the dependency graph

Closing
Tiny incremental spreadsheet system

\Where can you use this...

Financial systems

888888888

e | ve financial models

444444444444

BB North America

B South America | 439719 | 17461 | 4

e [ncremental computation

000000000

888888888888888

with dependency graph

Interesting programming systems

e | [ve programming systems
e Future more usable programming tools!

Conclusions

A tiny incremental spreadsheet system

e Computation as dependency graph
e \Working with two-dimensional grid
e Good old (ML-like) expressions

Tomas Petricek, 309 (3rd floor)

™ petricek@d3s.mff.cuni.cz

© https//tomasp.net | @tomaspetricek

© https//d3s.mff.cuni.cz/teaching/nprg0/7/

mailto:petricek@d3s.mff.cuni.cz
https://tomasp.net/
http://twitter.com/tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg077

ntt
Ina

Ntt
Ntt
Ntt
Nt

Nt

Ds://direct. mit.edu/books/book/30/1/Spreadsheet-
nlementation-TechnologyBasics-and (hard to get...)

0s//www.theregister.com/2020/12/04/microsoft_excel_lambdz

DS/ www.felienne.com/archives/297/4
Ds://arxiv.org/ftp/arxiv/papers/1807/1807.085/8.pdf

DS //theconversation.comy/the-reinhart-rogoff-error-or-

NOW-NOt-to-excel-at-economics-13646

0s.//genomebiology.biomedcentral.com/articles/10.1186/s130

016-1044-/

Ntt

spreadsheet-learning

0S://advait.org/publications-web/sarkar-2018-

https://direct.mit.edu/books/book/3071/Spreadsheet-Implementation-TechnologyBasics-and(hard
https://direct.mit.edu/books/book/3071/Spreadsheet-Implementation-TechnologyBasics-and(hard
https://www.theregister.com/2020/12/04/microsoft_excel_lambda/
https://www.felienne.com/archives/2974
https://arxiv.org/ftp/arxiv/papers/1807/1807.08578.pdf
https://theconversation.com/the-reinhart-rogoff-error-or-how-not-to-excel-at-economics-13646
https://theconversation.com/the-reinhart-rogoff-error-or-how-not-to-excel-at-economics-13646
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-1044-7
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-1044-7
https://advait.org/publications-web/sarkar-2018-spreadsheet-learning
https://advait.org/publications-web/sarkar-2018-spreadsheet-learning

