
NPRG077
TinyExcel: Tiny incremental
spreadsheet system

Tomáš Petříček, 309 (3rd floor)

 |


petricek@d3s.mff.cuni.cz
https://tomasp.net @tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg077

mailto:petricek@d3s.mff.cuni.cz
https://tomasp.net/
http://twitter.com/tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg077

It is Turing-complete!
Encoded using "drag-down"

Is Excel real programming?
It is widely-used!
Simple, but can do a lot...

TinyExcel
What makes spreadsheets interesting?

 Most accessible programming tools!
 Program in a two-dimensional space
 Edit and view in the same environment
 Automatic and live sheet recomputation

Technical Di-
mensions of
Programming
Systems
(Jakubovic et al., 2023)

What matters about
stateful interactive
systems?

Demo
Excel data exploration basics

Abstraction is hard
Drag-down for formulas
makes abstraction easy

You only ever work with
concrete values

Always see sample inputs
& verify sample outputs

TinyExcel
Scope of the tiny version

 Two-dimensional space with references
 "Drag-down" to apply formula to a column
 Relative and absolute cell references
 Incremental computational engine

TinyExcel
Technical dimensions

The good and the bad
High usability

Live exploratory programming
Work with concrete values
Learning from examples

High-profile errors
"Growth in the time of debt" errors
SEPT2, MARCH1 gene names
(Septin, Membrane-Associated Ring Finger)

Confusing terminology
 Exploratory programming

Write, run, rethink with easy editing
 Live programming

See results of your program immediately
 Live coding

Run immediately, typically audio performance
 Interactive programming

Modify stateful programming system

Spreadsheets are...
Exploratory - easy to
fiddle with data

Live - you see results
(almost) immediately

Concreteness
Unimate industrial
robot (1961)

Program by moving
the robotic hand

Macro recording
but done right

Concrete programming
Programming by demonstration

Think macro recording
How to generalize & re-apply
"Drag down" in spreadsheets

Programming by example
Generalize from input/output list
Search for fitting program
Also FlashFill in Excel

Demo
FlashFill in Excel

How people learn Excel
From existing spreadsheets

View source of formulas
Learn how functions work
Logic needs to be visible!

Going to the expert
Every office has Excel "guru"
Needed for harder aspects
Needed for use that does not have a "trace"

The grid power!
Humans are good at
working with space

Programs are not
typically spatial...

Grid is limiting, but
powerful concept

TinyExcel
Learning from spreadsheets?

 More programming for non-programmers?
 Immediate live feedback is great!
 Abstractions from working with concrete values
 Programs should exist in understandable space

Could "normal"
programming be
more like this?

Demos by Bret Victor

Learnable Program-
ming: Designing a
programming system
for understanding
programs ()online

http://worrydream.com/LearnableProgramming/

TinyExcel
Implementation techniques

Inter-cell
dependencies
In what order to
evaluate sheet?

Avoid evaluating
a cell repeatedly!

What to re-evaluate
when cells change?

Dependency graphs
Dependencies via cell
and range references

Cyclic dependencies

Excel does a fixed maximal
number of iterations

Explicit or implicit in code

Graph data structure vs.
event listeners

Reactive programming
Different implementations

Functional Reactive Programming
ReactiveX (rxjs, RxJava, Rx.Net)
Elm software architecture

Implementation techniques
Push-based - Changes propagated from source
Pull-based - Update required by the consumer
Builder-based - Computation to be instantiated

TinyExcel
Implementation techniques

 Naive non-cached recursive starting point
 Cell is as graph node with "Updated" event
 Depending nodes listen, recompute & notify
 Tricky error and update handling...

The F# language
What we need for Excel

What we need to write Excel
Event handling

F# events are objects (values)
Can trigger & register handlers

More tips & tricks
Collection processing
Fancy patterns and active patterns

Finally a user interface?
Would be nice, but setup costs high...
Write sheet as HTML document & open

Generating lists
List comprehensions with the yield keyword

let worldInfo =
 [yield addr "A1", Const(String "Continent")
 yield addr "B1", Const(String "Population (thousands)")
 for i, (cont, pop) in Seq.indexed continents do
 yield addr ("A"+string(i+2)), Const(String cont)
 yield addr ("B"+string(i+2)), Const(Number pop)]

yield adds another item to the list
for and other constructs to write generators
Seq.indexed trick to get item index

Demo
Extending the List module

// Decares event value
let evt = Event<int>()

// Trigger event
evt.Trigger(1)
evt.Trigger(2)
evt.Trigger(3)

// Object for listening
evt.Publish

// Listen and print
evt.Publish.Add(fun n ->
 printfn "Got: %d" n)

F# Events
Regular F# objects
Not special constructs

Corresond to
IObservable in C#

Add and remove
handlers using
AddHandler and
RemoveHandler

Demo
Working with F# events

Writing and opening HTML files
If you know C#, you can use other options too!

let demo () =
 let f = Path.GetTempFileName() + ".html"
 use wr = new StreamWriter(File.OpenWrite(f))
 wr.Write("""<html><body><h1>Hello world!</h1></body></html>""")
 wr.Close()
 Process.Start(f)

GetTempFileName gives you a file in TEMP folder
use to make sure stream gets closed on error
Process.Start can (sometimes) open files too

TinyExcel
Implementation structure

// In column, row format
// e.g. A1 becomes (1, 1)
type Address = int * int

// Note error is a value!
type Value =
 | Number of int
 | String of string
 | Error of string

// Operators are functions
type Expr =
 | Const of Value
 | Reference of Address
 | Function of string * Expr list

// Using immutable F# map
type Sheet = Map<Address, Expr>

Simple start
Standard ML-like
expression language

References (instead
of variables) are
evaluated recursively

Sheet maps (filled)
addresses to
expressions

// Expression and value are
// mutable. Updated triggered
// when they change.
type CellNode =
 { mutable Value : Value
 mutable Expr : Expr
 Updated : Event<unit> }

// Immutable map
// of mutable cells
type LiveSheet =
 Map<Address, CellNode>

Version with the
dependency graph
Value evaluated
on creation which
prevents circular refs

Expression stored
"drag down" expansion

Updated event
to notify of changes

Advanced extensions
Ranges and array values

type Value = // (...)
 | Array of Value list

type Expr = // (...)
 | Range of Address * Address

Absolute addresses
type Index = Fixed of int | Normal of int
type RawAddress = int * int
type Address = Index * Index

Lab overview
TinyExcel step-by-step

TinyExcel - Basic tasks
1. Simple expression evaluator

With grid references by cell address

2. "Drag down" formula expanding
Relocating relative references in formula

3. Reactive event-based structure
Refactoring code to use graph nodes

4. Reactive event-based computation
Adding update event handling

5. Rendering sheets as HTML pages
First step towards a user interface

TinyExcel - Bonus and super tasks
1. Absolute and relative addresses

Alongside with improved "drag down"

2. Adding range selection and array values
Required for the SUM function

3. Adding change visualization
Tracking and showing what has changed

4. Full support for live editing
Updating dependencies in the dependency graph

Closing
Tiny incremental spreadsheet system

Where can you use this...
Financial systems

Live financial models
Incremental computation
with dependency graph

Interesting programming systems
Live programming systems
Future more usable programming tools!

Conclusions
A tiny incremental spreadsheet system

Computation as dependency graph
Working with two-dimensional grid
Good old (ML-like) expressions

Tomáš Petříček, 309 (3rd floor)

 |


petricek@d3s.mff.cuni.cz
https://tomasp.net @tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg077

mailto:petricek@d3s.mff.cuni.cz
https://tomasp.net/
http://twitter.com/tomaspetricek
https://d3s.mff.cuni.cz/teaching/nprg077

 to get...)
https://direct.mit.edu/books/book/3071/Spreadsheet-
Implementation-TechnologyBasics-and (hard

https://www.theregister.com/2020/12/04/microsoft_excel_lambda

https://www.felienne.com/archives/2974

https://arxiv.org/ftp/arxiv/papers/1807/1807.08578.pdf

https://theconversation.com/the-reinhart-rogoff-error-or-
how-not-to-excel-at-economics-13646

https://genomebiology.biomedcentral.com/articles/10.1186/s1305
016-1044-7

https://advait.org/publications-web/sarkar-2018-
spreadsheet-learning

https://direct.mit.edu/books/book/3071/Spreadsheet-Implementation-TechnologyBasics-and(hard
https://direct.mit.edu/books/book/3071/Spreadsheet-Implementation-TechnologyBasics-and(hard
https://www.theregister.com/2020/12/04/microsoft_excel_lambda/
https://www.felienne.com/archives/2974
https://arxiv.org/ftp/arxiv/papers/1807/1807.08578.pdf
https://theconversation.com/the-reinhart-rogoff-error-or-how-not-to-excel-at-economics-13646
https://theconversation.com/the-reinhart-rogoff-error-or-how-not-to-excel-at-economics-13646
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-1044-7
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-1044-7
https://advait.org/publications-web/sarkar-2018-spreadsheet-learning
https://advait.org/publications-web/sarkar-2018-spreadsheet-learning

