
Write your own tiny programming system(s)
Tiny systems as a methodology

Tomas Petricek, Charles University









tomas@tomasp.net
@tomasp.net
https://tomasp.net
https://d3s.mff.cuni.cz/teaching/nprg077

mailto:tomas@tomasp.net
https://bsky.app/profile/tomasp.net
https://tomasp.net/
https://d3s.mff.cuni.cz/teaching/nprg077

Academic research
What are we trying to study?

Basic essential principles
In isolation from other factors
You have to ignore a lot!

What to ignore in programming?

Efficient implementation?
Wide-spread user adoption?
User interface of editor tools?

Programming
language theory
Ignore implementation
and practical features

Prove that the core
idea is formally sound

Human-computer
interaction (HCI)
Ignore inner working
and implementation

Show that users can
actually use it and how

Performance
evaluation
Ignore usability and
design implications

Show that you can do
better than a baseline

Tiny systems
What is not covered?

 Syntax choices and writing parsers

 Compilation and JIT-based runtimes

 Formal semantics and correctness

 Supporting real-world use cases

Tiny systems
What can we study?

 Can talk about stateful interactive systems

 Implement key aspects of inner working

 Reconstruct interesting past systems

 But cannot be printed on 12 pages of A4

Demo
Pygmalion

Why study 1908s
programming systems?

No code programming!

First us of an "icon"!

Education

 Best way to learn?
 Write it on your own!

 Understand principles
 As well as subtle details

 I hope you'll have fun!
 Little may be enough...

Two uses of tiny systems
Research

 Imagine new paradigms
 End-user programming?

 Focus on interaction
 How exactly did it work

 Ignore practical details
 They can often wait!

Teaching tiny systems
(Kamin, 1990)

Used in multiple
courses worldwide

Examples in Pascal

Languages covered are
APL, Clu, LISP, Prolog,
Smalltalk, Scheme, SASL

Not always focused
on the key aspect

Tiny systems and AI
(Schank, Riesbeck, 1981)

Miniature implementations
of 5 Yale AI lab programs

Faster, more efficient,
easier to understand,
modify and extend

"Miniatures, demos and
artworks" by Warren Sack

Tiny systems and ML
(Distill, 2016-2021)

Five affordances of
interactive articles

Connecting people & data
Making systems playful
Prompting self-reflection
Personalizing reading
Reducing cognitive load

