Write your own tiny programming system(s)
Tiny systems as a methodology

Tomas Petricek, Charles University

¥ (Omas@tomasp.net
¥ (Wtomasp.net

F/\Y

& Nttps/tomasp.net

V/\N
[]]

& https//d3s.mff.cuni.cz/teaching/nprg0/7/

mailto:tomas@tomasp.net
https://bsky.app/profile/tomasp.net
https://tomasp.net/
https://d3s.mff.cuni.cz/teaching/nprg077

Academic research

What are we trying to study?

e Basic essential principles
e [N isolation from other factors
e YOU have to ignore a |ot!

What to ignore in programming?

o Efficient implementation?
e \Wide-spread user adoption?
o User interface of editor tools?

TRANSACTIONS

ooooo

" - ROYAL SOCIETT OF EDI

t e —
(const e@elkFc:e (van (z:7)e(use) Fx: 7T
I'rx:o0@Rx(s)Fe:T
(abs) .
l'erRF-Xre:o =71
(@pD) leRte o7 IzeShes:o
PP I',I';eRx (t®S)Feiex: T
et I'eStei:oc TIs,z:0@Rx(t)Fex:T
(let) Fl,FQ@RX(t®5)|—|et$:€1in€2ZT
Il'eRFe: 7 I'eR ~T@R,0
(ctx) 7
I'eR' F6e: 1
IYeR' ~»TeR,0
(weak) [z :7e@eR x (ign) ~ T'eR,)
F,y:o,z:1,'2@Rx (t) x (s) xQ ~»
(exch) IN,z:7my:0,l2@Rx{(s)x(t)xQ,0
(contr) I'z:7,I2@Rx (s®t) xQ ~

(sub)

N,y:7mz:71,T@Rx(s)x{t)xQ, [y, z > x]

IN,z: 7, I2@Rx(s') xT ~~

/
I'i,z:7,T2@R=x(s)=T,0 (s <)

Programming
language theory

lgnore implementation
and practical features

Prove that the core
idea is formally sound

L2

Charles
University

@ Playground

< c

olympics. 'filter data'.'Games is'.'Rio (2016)'.then
.'group data'.'by Team'.'sum Gold'.'sum Silver'.then

.'sort data' |
K by Gold
A by Gold descending
Full source code A by silver
in a text editor A by Silver descending
A by Team
M by Team descending
A then
Team Gold
United States 141
United Kingdom (Great Britain) 68
Germany 53

- a X

Q O Guest

Programming vi
iterative prompti

ng

©)

Silver
55

55

Instantaneous

preview of results

Human-computer
interaction (HCI)

lgnore inner working
and implementation

Show that users can
actually use it and how

L2

Charles
University

Delay (ms)

1000~

() combine:
(d)blur ©)let

AL

(@) load ®)arey

(c) blur
1 J-J_ ‘
N i
0 10 2

Token (number)

(g) combine () let

1 L

Evaluation method

W caroyvaie
a2y

M Figure 11 Time required to recompute the results of a sample program after individual

tokens are added or modified for three different evaluations strategies.

anjea-Ag-es

Aze|

Count

anl

1000 2000
Delay (ms)

0 1000 2000
Delay (ms)

5

Evaluation method

[P
lazy
[

B Figure 12 Distribution of delays incurred when updating previews. We show a histogram
computed from all delays (left) and only from delays larger than 15 ms (right).

Performance
evaluation

lgnore usability and
design implications

Show that you can do
petter than a baseline

L2

Charles
University

Tiny systems
\What is not covered?

<[> Syntax choices and writing parsers
/® Compilation and JIT-based runtimes
& Formal semantics and correctness
L& Supporting real-world use cases

Tiny systems
What can we study?

R Can talk about stateful interactive systems

2
B

@

mplement key aspects of inner working
Reconstruct interesting past systems

But cannot be printed on 12 pages of A4

Ezo

Fygmalion demo

menu

jcans
create
change
delete
capy
refresh
show
narne
walue
zhape
biady

opzodes

R | R

and
ar
not

cantraol
2

call
return
repeat
dane
eval

others
remember
constant
define
display
draw
text
break

10

falze z& true

a

T20

false

T20

fou se walue

Mol =e

120

rememb ered

smalltalk

Demo
Pygmalion

Why study 1908s
programming systems?

NoO code programming!

~irst us of an "icon'!

L2

Charles
University

Two uses of tiny systems

Education

A.".l
) §
—

3 Best way to learn?

Write It on your own!

€ Understand principles

As well as subtle details

& | hope you'll have fun!

_ittle may be enougn...

Research

M® Imagine new paradigms

A

End-user programming?

Focus on interaction
How exactly did it work

lgnore practical details
They can often wait!

!

Inter preter'BaSEd
Approach
| |

Teaching tiny systems
(Kamin, 1990)

Used in multiple
courses worldwide

Examples in Pascal

Languages covered are
APL, Clu, LISP Prolog,
Smalltalk, Scheme, SASL

Not always focused
on the key aspect

Tiny systems and Al
(Schank, Riesbeck, 1981)

Miniature implementations
of 5 Yale Al lab programs

Faster more efficient
easier to understand,
modity and extend

‘Miniatures, demos and
artworks" by Warren Sack

Contents

Introduction
Interactive Articles: Theory &
Practice
Connecting People and Data
Making Systems Playful
Prompting Self-Reflection
Personalizing Reading
Reducing Cognitive Load
Challenges for Authoring
Interactives
Critical Reflections

Looking Forward

Communicating with
Interactive Articles

Examining the design of interactive articles by synthesizing theory from disciplines such
as education, journalism, and visualization.

FiGURE 1 Exemplary Interactive Articles From Around The Web. Se

i article for more information.

AUTHORS AFFILATIONS PUBLISHE 0

Fred Hohman Georgia Tech Sept. 11, 2020 10.23915/distill. 00028
Matthew Conlen University of Washington

Jeffrey Heer University of Washington

Duen Horng (Polo) Chau Georgia Tech

Computing has changed how people communicate. The transmission of news, messages, and
ideas is instant. Anyone’s voice can be heard. In fact, access to digital communication
technologies such as the Internet is so fundamental to daily life that their disruption by
government is condemned by the United Nations Human Rights Council [11. But while the
technology to distribute our ideas has grown in leaps and bounds, the interfaces have
remained largely the same.

Parallel to the development of the internet, researchers like Alan Kay and Douglas Engelbart
worked to build technology that would empower individuals and enhance cognition. Kay
imagined the Dynabook (2! in the hands of children across the world. Engelbart, while best
remembered for his “mother of all demos,” was more interested in the ability of computation
to augment human intellect (3]. Neal Stephenson wrote speculative fiction that imagined
interactive paper that could display videos and interfaces, and books that could teach and
respond to their readers [4]

Tiny systems and ML
Distill, 20716-2021

Five affordances of
interactive articles

Connecting people & data
Viaking systems playful
Prompting self-reflection
Personalizing reading
Reducing cognitive load

L2

Charles
University

