
Write your own tiny programming system(s)
Programming languages and systems

Tomas Petricek, Charles University









tomas@tomasp.net
@tomasp.net
https://tomasp.net
https://d3s.mff.cuni.cz/teaching/nprg077

mailto:tomas@tomasp.net
https://bsky.app/profile/tomasp.net
https://tomasp.net/
https://d3s.mff.cuni.cz/teaching/nprg077

Programming
Languages
Programming is
writing code

Formal semantics,
implementation,
paradigms, types

We know how
to study this!

Programming
Systems
Interacting with a
stateful system

Feedback, liveness,
interactive user
interfaces

But how do we
study this?

Paradigm shift in 1990s
From systems to languages

From running system to code
From state & interaction to semantics
Incommensurable ways of thinking!

History of science matters!

How did we get where we are?
What ideas got lost along the way?
How to recover them?

Language paradigms
 Functional programming

No mutable state, everything a function

 Imperative programming
Mutable memory with pointers

 Object-oriented programming
Everything an object, hides its own logic

 Logic programming
Declare facts and use inference

Demo
Logic programming in Prolog

System interaction
 Command line programming systems

Code editor, compiler, build tools, etc.

 Image-based programming model
Programming system is always running

 Interactive and live programming
System provides continuous feedback

 Incremental or reactive evaluation
Recompute on edit or when new data come

Demo
Object-orientation in Smalltalk

What really matters?
Static structure (program)

Source code of the program
What you have at the start

Dynamic structure (process)

Runtime data structures
What else do you need to run

Logic of evaluation (execution)

How the dynamic state evolves?

Operational
semantics
Standard approach
to programming
language theory

Why write small
interpreters instead?

(* A term like 'father(william, X)'
 consists of predicate 'father',
 atom 'william' and variable 'X' *)
type Term =
 | Atom of string
 | Variable of string
 | Predicate of string * Term list

(* A rule 'head(...) :- body.' *)
type Rule =
 { Head : Term
 Body : Term list }

(* A program is a list of rules *)
type Program = Rule list

Code can run!
A good way to explain
the structures!

1) Functional data
types for the static and
dynamic structure

2) A function to model
the evaluation logic

