Write your own tiny programming system(s)
Programming languages and systems

Tomas Petricek, Charles University

¥ (Omas@tomasp.net
¥ (Wtomasp.net

F/\Y

& Nttps/tomasp.net

& https//d3s.mff.cuni.cz/teaching/nprg0/7/

mailto:tomas@tomasp.net
https://bsky.app/profile/tomasp.net
https://tomasp.net/
https://d3s.mff.cuni.cz/teaching/nprg077

— ¥ <: Top Based on System F (23-1) and simple subtyping (15-1)
1
Syntax Subtyping
£ ferms: res<s (S-REFL)
X variable
Ax:T.t abstraction I'eS<U Frev<T (S-TRANS)
tt application TES<T
AX<:T.t type abstraction o
FesS< T S-Top
t [T] type application P (5-Tor)
X<:TeTl
v o= values: TEX<T (5-TVaR)
Ax:T.t abstraction value
AX<:T.t type abstraction value FETi<t S [ES < To (S-ARROW)
TESi—-S<Ti—Ta '
T == types: . .
X type variable T Vl;(' X_TJ'UlsF 52;)(T_ZU = (S-ALL)
Top maximum type = essEllodp & W2kl 1B
T-T type of functions Typin .
g _I' Ft:T
VX<:T.T universal type w Ter -
X:
— (T-VAR)
I = contexts: FEx:T
@ empty context Ix:Ti-t2 1 To
T, x:T term variable binding [EAx:Tr.ts: Ti—Ts (T-ABs)
I[LX<:T type variable binding
't : Tii—=Ti2 Ity Tiy
. (T-App)
Evaluation t—t FFtit i T
tl—otll I[LX<:iTy —t2:T2
R —— - T-TABS
Tttt (E-Arp1) TEAX<iTy .6 ¢ VX< T, L TABS)
tz—-t'z (E-APP2) -t : VX<:Tqp . To2 I'-Tr <t Ty
_ -APP:
vity — v th ? [=t [T2] @ [X = T2lTe2
N " (T-TApP)
11— 4
- (E-TAPP) '=t:$S F=S<T
1 [T2] — £ [T2] e (T-SuB)

(AX<:Tyy . t12) [T2] — [X = T2lt12
(E-TAPPTABS)

(Ax:Typ.t12) V2 — [X = valtiz (E-APPABS)

Programming
Languages

Programming Is
writing code

Formal semantics
implementation,
nDaradigms, types

We know how
to study this!

)

L2

Charles
University

Wednescay
Oectober 12, 1977
1049 am

XEROX - toacivgResearch e

SCTEETL Testare
Smalltalk quiic

Changes
Fileg

Fones
Classes
Messages
Hardeopy

1314 disk pages

R
SrElEa 2
G, TR
Event Resp) THIS 15 13 Supendass for presemnoing windons onoe dispiy, I
enter [self ohds corirm il oie srglus s o depresaed oueshde. itle i

caitherul TS Gonred, fr dismribnees mresneges o frovlf Igead o nser
leave [docuy \ECRIGTE,

st oot ecnlin z

[eclitMen | STHTUP i
sotollBar [frome containg: stylus loc=.

[self enter,

[tepeats

[[frame containg: stylus loc=.
[Reyboard active[self keyboari]

Sty “ Home
self oury — - .

stylus d

fifalse]

Dofault Eventlll - Welcome to HyperCard _

Color Tools are ON
.

el & &K

HyperCard Tour HyperCard Help Practice

[fm‘m,e fulthakh
titleframe p

titleframe co =3

AN
Art Bits Addresses Phone Dialer

Y=
QuickTime Tools AppleSoript Mail Merge

v
AppleSeript Text Controls

Home

@1987-1995 Apple Computer, Inc.
All Rights Reserved.

New Features

Graph Maker

Stack Kit

Programming
Systems

Interacting with a
stateful system

Feedback liveness
iNteractive user
iNnterfaces

But how do we
study this?

LT3
Charles
University

Paradigm shift in 1990s

From systems to languages

e From running system to code

e From state & Interaction to semantics
e [ncommensurable ways of thinking!

History of science matters!

e How did we get where we are?
e \What ideas got lost along the way?
e How to recover them?

The Structure of a Programming

Richard P. Gabriel Language
“I don’t want to die in a language 1BM Research <
| can’t understand.” Redwood City, CaliforniaUsa~ Revolution
 Jorse Luis Borges e b com
92 mecom

Abstract

Categories and Subject Descriptors A0 [General]

General Terms Design

Keywords Engincering, science, paradigms, incommensu-
rability

1n 1990, two youngand very smart computer sci-
entists—Gilad Brachaand William Cook—wrote
apivotal paper called “Mixin-based Inheritance™
[whichimmediatelylaid claimtobeingthefirst

Misio-based Ieritace

at Beta, Smalltalk, Flavors, and CLOS
‘mechanism that could account for the three different sorts

i in these I luding mixins
from Flavors and CLOS. They named

My attention was directed to this paper by Gilad Bracha
himself when he told me in Brazil at AOSD in the spring of
2011 that most Lisp people who read the paper had strong
objections to what he and William Cook had written about
Lisp and CLOS.

That night I pulled the paper down from the ACM server
and read it while outside enormous puffed clouds dwelled
overhead, it from beneath by the town of Porto de Galinhas
on the Brazilian coast; the smells of burning sugarcane and
bitter ocean pushed into my room.

Permission to make digital or hard copies ofall or partofthis work
for personal o classroom use s granted without fee provided that
copies re not made or distributed for profit or commercial advan
tage and that copies bear this notice and the full citation on the
first page. To copy otherwise,or republish, o poston servers r to

Engineering, A Path To Science

Engincers build things; sc
phers get lostin broad daylight.

‘What I read in Brazil reminded me of my quest to dem-
onstrate thatin the pursuit of knowledge, atleast in software

describe reality; philoso-

p
science—that i, even ifscience ultimately produces the most
reliable facts, the process often begins with engineering.
Thelieve it's a common belief that engincers only follow
paths laid down by scientists, adding creativity and practi
aal ofscience

Omward! 2012, October 19-26,2012, Tucson, Arizona, USA.
Copyright © 2012 ACM 978-1-4503-1562-3/12/10...$15.00.

at Columbia University, in an essay for the New York Times

L2

Charles
University

Language paradigms

9

()

-unctional programming

O mutable state, everything a function
mperative programming
Vutable memory with pointers

Object-oriented programming
—verything an object, hides its own logic
_0gic programming

Declare facts and use inference

Demo
Logic programming in Prolog

System interaction

> Command line programming systems
Code editor, compiler, build tools, etc.

P8 Image-based programming model
Programming system is always running

< Interactive and live programming
System provides continuous feedback

BB Incremental or reactive evaluation
Recompute on edit or when new data come

Demo
Object-orientation in Smalltalk

\What really matters?

Static structure (program)

e Source code of the program
e \What you have at the start

Dynamic structure (process)

e Runtime data structures
e \What else do you need to run

Logic of evaluation (execution)
e How the dynamic state evolves?

Operational

(deref) (16, s) — (n,s) if £ € dom(s) and s(£) = n Semantlcs

(assignl) (£:=n,s) — (skip,s +{{— n}) if £ € dom(s)

ign) Ll Standard approach
(eqt) - (skips a.s) — (e, o programming
{er, 8) — (e1,8")
o) e) language theory

(ifl) (if true then e, else e3,s) — (e, s)

Why write small
interpreters instead?

(if2) (if false then ey else e3,s) — (e3,s)

(i) o1, 8) — {63, ¢
(if e1 then ey else e3,s) — (if e then ey else e3,s’)

(* A term like 'father(william, X)'
consists of predicate 'father',
atom 'william' and variable 'X' *)

type Term =
| Atom of string
| Variable of string
| Predicate of string * Term list

(* A rule 'head(...) :—= body.' *)
type Rule =
{ Head : Term
Body : Term 1list }

(* A program is a list of rules *)
type Program = Rule list

Code can run!

A good way to explain
the structures!

1) Functional data
types for the static and
dynamic structure

2) A function to model
the evaluation logic

