
Write your own tiny programming system(s)
Why such a strange course topic?

Tomas Petricek, Charles University









tomas@tomasp.net
@tomasp.net
https://tomasp.net
https://d3s.mff.cuni.cz/teaching/nprg077

mailto:tomas@tomasp.net
https://bsky.app/profile/tomasp.net
https://tomasp.net/
https://d3s.mff.cuni.cz/teaching/nprg077

Research
Understanding & improving programming

 Programming languages, types and theory

 Interactive programming environments

 History and philosophy of computing

 Building tiny systems throughout!

Many different tiny systems!
 PhD, University of Cambridge

Context-aware programming languages

 Microsoft Research Cambridge
F# and applied functional programming

 The Alan Turing Institute, London
Expert and non-expert tools for data science

 University of Kent, Canterbury
Principles of programming systems

 Charles University, Prague
Human-computer interaction and history

Demo
Coeffects playground

Needed "implementation"
to finish my PhD!

How to show potential
uses of theoretical work?

Tiny web demos of two
potential applications

Demo
The Gamma project

Making programmatic data
exploration accessible to
non-programmers

Small typed language, but
interaction is why it works!

Demo
The Denicek project

Computational substrate
for end-user programming

Making implementation of
end-user programming
experiences easier...

Practical details
Course structure

Videos to watch in advance
Hands-on 3-hour labs
Code skeleton with detailed comments

Doing the course

Six different languages or systems
Come to the labs to get help!
Complete basic tasks for 4/6 systems

PRG*PRG / Prague
Programming systems
& languages research

D3S at MFF CUNI
PRL at FIT CTU

Ask us about PhD &
post-doc opportunities!

https://prgprg.org

https://prgprg.org/

Write your own tiny programming system(s)
Tiny systems as a methodology

Tomas Petricek, Charles University









tomas@tomasp.net
@tomasp.net
https://tomasp.net
https://d3s.mff.cuni.cz/teaching/nprg077

mailto:tomas@tomasp.net
https://bsky.app/profile/tomasp.net
https://tomasp.net/
https://d3s.mff.cuni.cz/teaching/nprg077

Academic research
What are we trying to study?

Basic essential principles
In isolation from other factors
You have to ignore a lot!

What to ignore in programming?

Efficient implementation?
Wide-spread user adoption?
User interface of editor tools?

Programming
language theory
Ignore implementation
and practical features

Prove that the core
idea is formally sound

Human-computer
interaction (HCI)
Ignore inner working
and implementation

Show that users can
actually use it and how

Performance
evaluation
Ignore usability and
design implications

Show that you can do
better than a baseline

Tiny systems
What is not covered?

 Syntax choices and writing parsers

 Compilation and JIT-based runtimes

 Formal semantics and correctness

 Supporting real-world use cases

Tiny systems
What can we study?

 Can talk about stateful interactive systems

 Implement key aspects of inner working

 Reconstruct interesting past systems

 But cannot be printed on 12 pages of A4

Demo
Pygmalion

Why study 1908s
programming systems?

No code programming!

First us of an "icon"!

Education

 Best way to learn?
 Write it on your own!

 Understand principles
 As well as subtle details

 I hope you'll have fun!
 Little may be enough...

Two uses of tiny systems
Research

 Imagine new paradigms
 End-user programming?

 Focus on interaction
 How exactly did it work

 Ignore practical details
 They can often wait!

Teaching tiny systems
(Kamin, 1990)

Used in multiple
courses worldwide

Examples in Pascal

Languages covered are
APL, Clu, LISP, Prolog,
Smalltalk, Scheme, SASL

Not always focused
on the key aspect

Tiny systems and AI
(Schank, Riesbeck, 1981)

Miniature implementations
of 5 Yale AI lab programs

Faster, more efficient,
easier to understand,
modify and extend

"Miniatures, demos and
artworks" by Warren Sack

Tiny systems and ML
(Distill, 2016-2021)

Five affordances of
interactive articles

Connecting people & data
Making systems playful
Prompting self-reflection
Personalizing reading
Reducing cognitive load

Write your own tiny programming system(s)
Programming languages and systems

Tomas Petricek, Charles University









tomas@tomasp.net
@tomasp.net
https://tomasp.net
https://d3s.mff.cuni.cz/teaching/nprg077

mailto:tomas@tomasp.net
https://bsky.app/profile/tomasp.net
https://tomasp.net/
https://d3s.mff.cuni.cz/teaching/nprg077

Programming
Languages
Programming is
writing code

Formal semantics,
implementation,
paradigms, types

We know how
to study this!

Programming
Systems
Interacting with a
stateful system

Feedback, liveness,
interactive user
interfaces

But how do we
study this?

Paradigm shift in 1990s
From systems to languages

From running system to code
From state & interaction to semantics
Incommensurable ways of thinking!

History of science matters!

How did we get where we are?
What ideas got lost along the way?
How to recover them?

Language paradigms
 Functional programming

No mutable state, everything a function

 Imperative programming
Mutable memory with pointers

 Object-oriented programming
Everything an object, hides its own logic

 Logic programming
Declare facts and use inference

Demo
Logic programming in Prolog

System interaction
 Command line programming systems

Code editor, compiler, build tools, etc.

 Image-based programming model
Programming system is always running

 Interactive and live programming
System provides continuous feedback

 Incremental or reactive evaluation
Recompute on edit or when new data come

Demo
Object-orientation in Smalltalk

What really matters?
Static structure (program)

Source code of the program
What you have at the start

Dynamic structure (process)

Runtime data structures
What else do you need to run

Logic of evaluation (execution)

How the dynamic state evolves?

Operational
semantics
Standard approach
to programming
language theory

Why write small
interpreters instead?

(* A term like 'father(william, X)'
 consists of predicate 'father',
 atom 'william' and variable 'X' *)
type Term =
 | Atom of string
 | Variable of string
 | Predicate of string * Term list

(* A rule 'head(...) :- body.' *)
type Rule =
 { Head : Term
 Body : Term list }

(* A program is a list of rules *)
type Program = Rule list

Code can run!
A good way to explain
the structures!

1) Functional data
types for the static and
dynamic structure

2) A function to model
the evaluation logic

Write your own tiny programming system(s)
A tase of the F# language

Tomas Petricek, Charles University









tomas@tomasp.net
@tomasp.net
https://tomasp.net
https://d3s.mff.cuni.cz/teaching/nprg077

mailto:tomas@tomasp.net
https://bsky.app/profile/tomasp.net
https://tomasp.net/
https://d3s.mff.cuni.cz/teaching/nprg077

The F# programming language
What is F# about?

Functional-first based on OCaml
Great interop with .NET and JS
Open-source (MIT) with team in Prague!

Who uses F# for what?

Consultancies for full-stack web dev
Finance and insurance companies for modelling
TU Kaiserslautern for systems biology
Success stories like Jet.com

Why F#?
Building tiny programming systems

 Algebraic data types for structure modelling

 Mostly functional is great for logic

 Runs everywhere & has nice tools

 I like the language and can help you!

Demo
First look at F#

Elmish architecture
Functional interactive user
interface development

Types for application
State and user Event

Functions to render
and update state

Demo
Building a counter in F#

Demo
Building a TODO list in F#

More about F#

We will only need a
small part of the
language!

I will introduce all
constructs we will
need as we go...

https://fsharp.org

https://fsharp.org/

References
Tiny system examples

Starting points

Ingalls, D. (2020).
Hohman, F. et al. (2020).
Schank, R. C., Riesbeck, C. K. (1981).

Kamin, S. (1990)
. Addison-Wesley.

Kamin, S. (1990)
Sack. W. (2020).

Coeffects: Context-aware programming languages
The Gamma: Democratizing data science
The Lost Ways of Programming: Commodore 64 BASIC

The Smalltalk Zoo: Smalltalk-78 (NoteTaker)
Communicating with Interactive Articles

Inside Computer
Understanding Five Programs Plus Miniatures

Programming languages: an interpreter-based
approach

PLIBA source code mirror on GitHub
Miniatures, Demos and Artworks: Three

Kinds of Computer Program, Their Uses and Abuses

https://tomasp.net/coeffects/
http://turing.thegamma.net/
https://tomasp.net/commodore64/
https://smalltalkzoo.thechm.org/
https://distill.pub/2020/communicating-with-interactive-articles/
https://www.routledge.com/Inside-Computer-Understanding-Five-Programs-Plus-Miniatures/Schank-Riesbeck/p/book/9780898590715
https://www.routledge.com/Inside-Computer-Understanding-Five-Programs-Plus-Miniatures/Schank-Riesbeck/p/book/9780898590715
https://dl.acm.org/doi/10.5555/78092
https://dl.acm.org/doi/10.5555/78092
https://github.com/pliba
https://www.shift-society.org/hapop5/boa.pdf
https://www.shift-society.org/hapop5/boa.pdf

