Write your own tiny programming system(s)
Why such a strange course topic?

Tomas Petricek, Charles University

¥ (Omas@tomasp.net
¥ (Wtomasp.net

F/\Y

& Nttps/tomasp.net

& https//d3s.mff.cuni.cz/teaching/nprg0/7/

mailto:tomas@tomasp.net
https://bsky.app/profile/tomasp.net
https://tomasp.net/
https://d3s.mff.cuni.cz/teaching/nprg077

Research
Understanding & improving programming

<[> Programming languages, types and theory
nteractive programming environments
History and philosophy of computing

b €

Aa Building tiny systems throughout!

Many different tiny systems!

BB PhD, University of Cambridge
Context-aware programming languages

e Microsoft Research Cambridge
=1 and applied functional programming

BB The Alan Turing Institute, London
Expert and non-expert tools for data science

M University of Kent, Canterbury
Principles of programming systems

i Charles University, Prague

Human-computer interaction and history

Demo
Coeffects: Context-aware programming languages C O e ffe C tS p | a\/ g ro u n d

Papers

Coeffects are Tomas Petricek’s PhD research proje We hide some details by default to keep the
programming language abstraction for understanding how programs tutorial shorter, but you can get them back if
access the context or environment in which they execute. you want!

The context may be resources on your mobile phone (battery, GPS I I
location or a network printer), loT devices in a physical neighborhood Short is i I'm h e e e | /Wﬂ e m e n a | O ﬂ
or historical stock prices. By under;tanding the neighborhood or) good! You practical!

history, a context-aware programming language can catch bugs earlier can always Show me more

and run more efficiently. come back. examples. :) |
This page is an interactive tutorial that shows a prototype t O | | ; y D

implementation of coeffects in a browser. You can play with two

simple context-aware languages, see how the type checking works Love
and how context-aware programs run. theory! m

Show me

Gi WLth all! Time is
This page is also an experiment in presenting programming language helmellithe not an issue.

equations.

research. It is a live environment where you can play with the theory M
using the power of new media, rather than staring at a dead pieces of O W O S O W O e | I | a
wood (although we have those too).
ical K?
uses of theoretical work

Programming languages evolve to reflect the changes in the computing What roblem are
ecosystem. The next big challenge for programming language designers P
is building languages that understand the context in which programs run. coeffects SOlVng?

This challenge is not easy to see. We are so used to working with .

context using the current cumbersome methods that we do not even see

that there is an issue. We also do not realize that many programming | y \/\/ \/\/
features related to context can be captured by a simple unified

abstraction. This is what coeffects do!

What are some examples of context-aware computations? O t e r] ‘t | E 1 | E 1 | ‘ C E i ‘t | O r] f ;
* In cross-platform code, the functions available on different
platforms are a context. You can use #if . If you get this wrong,
your code won't even compile!
e In the Game of Life or weather simulations, each cell in a grid

accesses neighboring cells. But do you know how many neighbors
it needs?

xd»

Charles
University

The Alan Turing Institute -

Data playground

let china = worldbank.byCountry.China.'Climate Change'.'C02 emissions (kt)'
.setProperties(seriesName="China")

let usa = worldbank.byCountry.'United States'.'Climate Change'.'C02 emissions (kt)'
.setProperties(seriesName="USA")

compost.charts.lines([china,usal).setColors(["red", "blue"1)
.setAxisX(1960).setLegend("right").setSize(800,300)

10,000,000
l USA
8,000,000 l China
6,000,000
4,000,000
2,000,000

0
1960 1970 7980 7990 2000 2010

Demo
The Gamma project

Making programmatic data
exploration accessible to
NoN-programmers

Small typed language, but
interaction is why it works!

Todo List

Transmute Sun into Philosopher's Stone [IEZH

Prepare Philosophic Mercury

Combine it with Mars and Luna

item=!

Demo
The Denicek project

Computational substrate
for end-user programming

Making implementation of
end-user programming
experiences easier...

L2

Charles
University

Practical detalils

Course structure

e \/Ideos to watch In advance
e Hands-on 3-hour labs
e Code skeleton with detalled comments

Doing the course

o Six different languages or systems
e Come to the labs to get help!
e Complete basic tasks for 4/6 systems

PRG*PRG / Prague

Programming systems
& languages research

D3S at MFF CUNI
PRL at FIT CTU

Prague Programming Languages and Systems Research Network A S k S g b 0 UJ[|:) h D &
post-doc opportunities!

Nttps://prgprg.org

https://prgprg.org/

Write your own tiny programming system(s)
Tiny systems as a methodology

Tomas Petricek, Charles University

¥ (Omas@tomasp.net
¥ (Wtomasp.net

F/\Y

& Nttps/tomasp.net

V/\N
[]]

& https//d3s.mff.cuni.cz/teaching/nprg0/7/

mailto:tomas@tomasp.net
https://bsky.app/profile/tomasp.net
https://tomasp.net/
https://d3s.mff.cuni.cz/teaching/nprg077

Academic research

What are we trying to study?

e Basic essential principles
e [N isolation from other factors
e YOU have to ignore a |ot!

What to ignore in programming?

o Efficient implementation?
e \Wide-spread user adoption?
o User interface of editor tools?

TRANSACTIONS

ooooo

" - ROYAL SOCIETT OF EDI

t e —
(const e@elkFc:e (van (z:7)e(use) Fx: 7T
I'rx:o0@Rx(s)Fe:T
(abs) .
l'erRF-Xre:o =71
(@pD) leRte o7 IzeShes:o
PP I',I';eRx (t®S)Feiex: T
et I'eStei:oc TIs,z:0@Rx(t)Fex:T
(let) Fl,FQ@RX(t®5)|—|et$:€1in€2ZT
Il'eRFe: 7 I'eR ~T@R,0
(ctx) 7
I'eR' F6e: 1
IYeR' ~»TeR,0
(weak) [z :7e@eR x (ign) ~ T'eR,)
F,y:o,z:1,'2@Rx (t) x (s) xQ ~»
(exch) IN,z:7my:0,l2@Rx{(s)x(t)xQ,0
(contr) I'z:7,I2@Rx (s®t) xQ ~

(sub)

N,y:7mz:71,T@Rx(s)x{t)xQ, [y, z > x]

IN,z: 7, I2@Rx(s') xT ~~

/
I'i,z:7,T2@R=x(s)=T,0 (s <)

Programming
language theory

lgnore implementation
and practical features

Prove that the core
idea is formally sound

L2

Charles
University

@ Playground

< c

olympics. 'filter data'.'Games is'.'Rio (2016)'.then
.'group data'.'by Team'.'sum Gold'.'sum Silver'.then

.'sort data' |
K by Gold
A by Gold descending
Full source code A by silver
in a text editor A by Silver descending
A by Team
M by Team descending
A then
Team Gold
United States 141
United Kingdom (Great Britain) 68
Germany 53

- a X

Q O Guest

Programming vi
iterative prompti

ng

©)

Silver
55

55

Instantaneous

preview of results

Human-computer
interaction (HCI)

lgnore inner working
and implementation

Show that users can
actually use it and how

L2

Charles
University

Delay (ms)

1000~

() combine:
(d)blur ©)let

AL

(@) load ®)arey

(c) blur
1 J-J_ ‘
N i
0 10 2

Token (number)

(g) combine () let

1 L

Evaluation method

W caroyvaie
a2y

M Figure 11 Time required to recompute the results of a sample program after individual

tokens are added or modified for three different evaluations strategies.

anjea-Ag-es

Aze|

Count

anl

1000 2000
Delay (ms)

0 1000 2000
Delay (ms)

5

Evaluation method

[P
lazy
[

B Figure 12 Distribution of delays incurred when updating previews. We show a histogram
computed from all delays (left) and only from delays larger than 15 ms (right).

Performance
evaluation

lgnore usability and
design implications

Show that you can do
petter than a baseline

L2

Charles
University

Tiny systems
\What is not covered?

<[> Syntax choices and writing parsers
/® Compilation and JIT-based runtimes
& Formal semantics and correctness
L& Supporting real-world use cases

Tiny systems
What can we study?

R Can talk about stateful interactive systems

2
B

@

mplement key aspects of inner working
Reconstruct interesting past systems

But cannot be printed on 12 pages of A4

Ezo

Fygmalion demo

menu

jcans
create
change
delete
capy
refresh
show
narne
walue
zhape
biady

opzodes

R | R

and
ar
not

cantraol
2

call
return
repeat
dane
eval

others
remember
constant
define
display
draw
text
break

10

falze z& true

a

T20

false

T20

fou se walue

Mol =e

120

rememb ered

smalltalk

Demo
Pygmalion

Why study 1908s
programming systems?

NoO code programming!

~irst us of an "icon'!

L2

Charles
University

Two uses of tiny systems

Education

A.".l
) §
—

3 Best way to learn?

Write It on your own!

€ Understand principles

As well as subtle details

& | hope you'll have fun!

_ittle may be enougn...

Research

M® Imagine new paradigms

A

End-user programming?

Focus on interaction
How exactly did it work

lgnore practical details
They can often wait!

!

Inter preter'BaSEd
Approach
| |

Teaching tiny systems
(Kamin, 1990)

Used in multiple
courses worldwide

Examples in Pascal

Languages covered are
APL, Clu, LISP Prolog,
Smalltalk, Scheme, SASL

Not always focused
on the key aspect

Tiny systems and Al
(Schank, Riesbeck, 1981)

Miniature implementations
of 5 Yale Al lab programs

Faster more efficient
easier to understand,
modity and extend

‘Miniatures, demos and
artworks" by Warren Sack

Contents

Introduction
Interactive Articles: Theory &
Practice
Connecting People and Data
Making Systems Playful
Prompting Self-Reflection
Personalizing Reading
Reducing Cognitive Load
Challenges for Authoring
Interactives
Critical Reflections

Looking Forward

Communicating with
Interactive Articles

Examining the design of interactive articles by synthesizing theory from disciplines such
as education, journalism, and visualization.

FiGURE 1 Exemplary Interactive Articles From Around The Web. Se

i article for more information.

AUTHORS AFFILATIONS PUBLISHE 0

Fred Hohman Georgia Tech Sept. 11, 2020 10.23915/distill. 00028
Matthew Conlen University of Washington

Jeffrey Heer University of Washington

Duen Horng (Polo) Chau Georgia Tech

Computing has changed how people communicate. The transmission of news, messages, and
ideas is instant. Anyone’s voice can be heard. In fact, access to digital communication
technologies such as the Internet is so fundamental to daily life that their disruption by
government is condemned by the United Nations Human Rights Council [11. But while the
technology to distribute our ideas has grown in leaps and bounds, the interfaces have
remained largely the same.

Parallel to the development of the internet, researchers like Alan Kay and Douglas Engelbart
worked to build technology that would empower individuals and enhance cognition. Kay
imagined the Dynabook (2! in the hands of children across the world. Engelbart, while best
remembered for his “mother of all demos,” was more interested in the ability of computation
to augment human intellect (3]. Neal Stephenson wrote speculative fiction that imagined
interactive paper that could display videos and interfaces, and books that could teach and
respond to their readers [4]

Tiny systems and ML
Distill, 20716-2021

Five affordances of
interactive articles

Connecting people & data
Viaking systems playful
Prompting self-reflection
Personalizing reading
Reducing cognitive load

L2

Charles
University

Write your own tiny programming system(s)
Programming languages and systems

Tomas Petricek, Charles University

¥ (Omas@tomasp.net
¥ (Wtomasp.net

F/\Y

& Nttps/tomasp.net

& https//d3s.mff.cuni.cz/teaching/nprg0/7/

mailto:tomas@tomasp.net
https://bsky.app/profile/tomasp.net
https://tomasp.net/
https://d3s.mff.cuni.cz/teaching/nprg077

— ¥ <: Top Based on System F (23-1) and simple subtyping (15-1)
1
Syntax Subtyping
£ ferms: res<s (S-REFL)
X variable
Ax:T.t abstraction I'eS<U Frev<T (S-TRANS)
tt application TES<T
AX<:T.t type abstraction o
FesS< T S-Top
t [T] type application P (5-Tor)
X<:TeTl
v o= values: TEX<T (5-TVaR)
Ax:T.t abstraction value
AX<:T.t type abstraction value FETi<t S [ES < To (S-ARROW)
TESi—-S<Ti—Ta '
T == types: . .
X type variable T Vl;(' X_TJ'UlsF 52;)(T_ZU = (S-ALL)
Top maximum type = essEllodp & W2kl 1B
T-T type of functions Typin .
g _I' Ft:T
VX<:T.T universal type w Ter -
X:
— (T-VAR)
I = contexts: FEx:T
@ empty context Ix:Ti-t2 1 To
T, x:T term variable binding [EAx:Tr.ts: Ti—Ts (T-ABs)
I[LX<:T type variable binding
't : Tii—=Ti2 Ity Tiy
. (T-App)
Evaluation t—t FFtit i T
tl—otll I[LX<:iTy —t2:T2
R —— - T-TABS
Tttt (E-Arp1) TEAX<iTy .6 ¢ VX< T, L TABS)
tz—-t'z (E-APP2) -t : VX<:Tqp . To2 I'-Tr <t Ty
_ -APP:
vity — v th ? [=t [T2] @ [X = T2lTe2
N " (T-TApP)
11— 4
- (E-TAPP) '=t:$S F=S<T
1 [T2] — £ [T2] e (T-SuB)

(AX<:Tyy . t12) [T2] — [X = T2lt12
(E-TAPPTABS)

(Ax:Typ.t12) V2 — [X = valtiz (E-APPABS)

Programming
Languages

Programming Is
writing code

Formal semantics
implementation,
nDaradigms, types

We know how
to study this!

)

L2

Charles
University

Wednescay
Oectober 12, 1977
1049 am

XEROX - toacivgResearch e

SCTEETL Testare
Smalltalk quiic

Changes
Fileg

Fones
Classes
Messages
Hardeopy

1314 disk pages

R
SrElEa 2
G, TR
Event Resp) THIS 15 13 Supendass for presemnoing windons onoe dispiy, I
enter [self ohds corirm il oie srglus s o depresaed oueshde. itle i

caitherul TS Gonred, fr dismribnees mresneges o frovlf Igead o nser
leave [docuy \ECRIGTE,

st oot ecnlin z

[eclitMen | STHTUP i
sotollBar [frome containg: stylus loc=.

[self enter,

[tepeats

[[frame containg: stylus loc=.
[Reyboard active[self keyboari]

Sty “ Home
self oury — - .

stylus d

fifalse]

Dofault Eventlll - Welcome to HyperCard _

Color Tools are ON
.

el & &K

HyperCard Tour HyperCard Help Practice

[fm‘m,e fulthakh
titleframe p

titleframe co =3

AN
Art Bits Addresses Phone Dialer

Y=
QuickTime Tools AppleSoript Mail Merge

v
AppleSeript Text Controls

Home

@1987-1995 Apple Computer, Inc.
All Rights Reserved.

New Features

Graph Maker

Stack Kit

Programming
Systems

Interacting with a
stateful system

Feedback liveness
iNteractive user
iNnterfaces

But how do we
study this?

LT3
Charles
University

Paradigm shift in 1990s

From systems to languages

e From running system to code

e From state & Interaction to semantics
e [ncommensurable ways of thinking!

History of science matters!

e How did we get where we are?
e \What ideas got lost along the way?
e How to recover them?

The Structure of a Programming

Richard P. Gabriel Language
“I don’t want to die in a language 1BM Research <
| can’t understand.” Redwood City, CaliforniaUsa~ Revolution
 Jorse Luis Borges e b com
92 mecom

Abstract

Categories and Subject Descriptors A0 [General]

General Terms Design

Keywords Engincering, science, paradigms, incommensu-
rability

1n 1990, two youngand very smart computer sci-
entists—Gilad Brachaand William Cook—wrote
apivotal paper called “Mixin-based Inheritance™
[whichimmediatelylaid claimtobeingthefirst

Misio-based Ieritace

at Beta, Smalltalk, Flavors, and CLOS
‘mechanism that could account for the three different sorts

i in these I luding mixins
from Flavors and CLOS. They named

My attention was directed to this paper by Gilad Bracha
himself when he told me in Brazil at AOSD in the spring of
2011 that most Lisp people who read the paper had strong
objections to what he and William Cook had written about
Lisp and CLOS.

That night I pulled the paper down from the ACM server
and read it while outside enormous puffed clouds dwelled
overhead, it from beneath by the town of Porto de Galinhas
on the Brazilian coast; the smells of burning sugarcane and
bitter ocean pushed into my room.

Permission to make digital or hard copies ofall or partofthis work
for personal o classroom use s granted without fee provided that
copies re not made or distributed for profit or commercial advan
tage and that copies bear this notice and the full citation on the
first page. To copy otherwise,or republish, o poston servers r to

Engineering, A Path To Science

Engincers build things; sc
phers get lostin broad daylight.

‘What I read in Brazil reminded me of my quest to dem-
onstrate thatin the pursuit of knowledge, atleast in software

describe reality; philoso-

p
science—that i, even ifscience ultimately produces the most
reliable facts, the process often begins with engineering.
Thelieve it's a common belief that engincers only follow
paths laid down by scientists, adding creativity and practi
aal ofscience

Omward! 2012, October 19-26,2012, Tucson, Arizona, USA.
Copyright © 2012 ACM 978-1-4503-1562-3/12/10...$15.00.

at Columbia University, in an essay for the New York Times

L2

Charles
University

Language paradigms

9

()

-unctional programming

O mutable state, everything a function
mperative programming
Vutable memory with pointers

Object-oriented programming
—verything an object, hides its own logic
_0gic programming

Declare facts and use inference

Demo
Logic programming in Prolog

System interaction

> Command line programming systems
Code editor, compiler, build tools, etc.

P8 Image-based programming model
Programming system is always running

< Interactive and live programming
System provides continuous feedback

BB Incremental or reactive evaluation
Recompute on edit or when new data come

Demo
Object-orientation in Smalltalk

\What really matters?

Static structure (program)

e Source code of the program
e \What you have at the start

Dynamic structure (process)

e Runtime data structures
e \What else do you need to run

Logic of evaluation (execution)
e How the dynamic state evolves?

Operational

(deref) (16, s) — (n,s) if £ € dom(s) and s(£) = n Semantlcs

(assignl) (£:=n,s) — (skip,s +{{— n}) if £ € dom(s)

ign) Ll Standard approach
(eqt) - (skips a.s) — (e, o programming
{er, 8) — (e1,8")
o) e) language theory

(ifl) (if true then e, else e3,s) — (e, s)

Why write small
interpreters instead?

(if2) (if false then ey else e3,s) — (e3,s)

(i) o1, 8) — {63, ¢
(if e1 then ey else e3,s) — (if e then ey else e3,s’)

(* A term like 'father(william, X)'
consists of predicate 'father',
atom 'william' and variable 'X' *)

type Term =
| Atom of string
| Variable of string
| Predicate of string * Term list

(* A rule 'head(...) :—= body.' *)
type Rule =
{ Head : Term
Body : Term 1list }

(* A program is a list of rules *)
type Program = Rule list

Code can run!

A good way to explain
the structures!

1) Functional data
types for the static and
dynamic structure

2) A function to model
the evaluation logic

Write your own tiny programming system(s)
A tase of the F# language

Tomas Petricek, Charles University

¥ (Omas@tomasp.net
¥ (Wtomasp.net

F/\Y

& Nttps/tomasp.net

V/\N
|}

& Nttps://d3s.mff.cuni.cz/teaching/nprg07/7/

mailto:tomas@tomasp.net
https://bsky.app/profile/tomasp.net
https://tomasp.net/
https://d3s.mff.cuni.cz/teaching/nprg077

The F# programming language

What is F# about?

e Functional-first based on OCaml|
e Greatinterop with NET and JS {
e Open-source (MIT) with team in Praguel

Who uses F# for what?

e Consultancies for full-stack web dev

e Finance and insurance companies for modelling
e TU Kaiserslautern for systems biology

e Success stories like Jet.com

Why F#?
Building tiny programming systems

em Algebraic data types for structure modelling
L& Mostly functional is great for logic

(]

(4 Runseverywhere & has nice tools

® | like the language and can help you!

Demo
First look at F

V) pc\'a = 2y
‘ N VQ\AJ?.\,

Twikia revdev >| ML
(wsch*re. Q4]
VQ.\/\AQ\,
> 34 > HT(“[(_7
S

—|HTHL ’

s

widial = State
\revu&e\» . tS-ra+e. = HUTHL

u(:c.\a.\-v. : 'Stare — ‘Eveut = ‘Sﬂ're,

Elmish architecture

Functional interactive user
interface development

Types for application
State and user Event

—FUNctions to render
and update state

Demo
Building a counterin F

Demo
Buildinga TODO listin F

B € fshaporg x 4+
C QO & fsharp.org

<> fsharp.org

: decimal

processPayment payment =
payment.
card ->

& Learn

F# Hello World in 5Smin &
F# for Beginners

F# for JavaScript

8 & L @

Leanv Usev Guidesv Testimonials v Community v

powerful technique shifts many bugs from runtime to compile time, dramatically
improving software reliability.

222 Community

Join the conversation on Bluesky or Discord
Participate in Amplifying F#

Contribute to F# projects

&

More about F#
https://fsharp.org

We will only need a
small part of the
languagel

| will introduce all
constructs we will
need as we go...

L2

Charles
University

https://fsharp.org/

References

Tiny system examples

e Coeffects: Context-aware programming languages
e [he Gamma: Democratizing data science
e The Lost Ways of Programming: Commodore 64 BASIC

Starting points

Ingalls, D. (2020). The Smalltalk Zoo: Smalltalk-78 (NoteTaker)
Hohman, F. et al. (2020). Communicating with Interactive Articles
Schank, R. C., Riesbeck, C. K. (1981). Inside Computer
Understanding Five Programs Plus Miniatures

Kamin, S. (1990) Programming languages: an interpreter-based
approach. Addison-Wesley.

Kamin, S. (1990) PLIBA source code mirror on GitHub
Sack. W. (2020). Miniatures, Demos and Artworks: Three
Kinds of Computer Program, Their Uses and Abuses

https://tomasp.net/coeffects/
http://turing.thegamma.net/
https://tomasp.net/commodore64/
https://smalltalkzoo.thechm.org/
https://distill.pub/2020/communicating-with-interactive-articles/
https://www.routledge.com/Inside-Computer-Understanding-Five-Programs-Plus-Miniatures/Schank-Riesbeck/p/book/9780898590715
https://www.routledge.com/Inside-Computer-Understanding-Five-Programs-Plus-Miniatures/Schank-Riesbeck/p/book/9780898590715
https://dl.acm.org/doi/10.5555/78092
https://dl.acm.org/doi/10.5555/78092
https://github.com/pliba
https://www.shift-society.org/hapop5/boa.pdf
https://www.shift-society.org/hapop5/boa.pdf

