
TinyML: Tiny functional language interpreter
Interpreter and step-by-step guide

Tomas Petricek, Charles University









tomas@tomasp.net
@tomasp.net
https://tomasp.net
https://d3s.mff.cuni.cz/teaching/nprg077

mailto:tomas@tomasp.net
https://bsky.app/profile/tomasp.net
https://tomasp.net/
https://d3s.mff.cuni.cz/teaching/nprg077

type Expression =
 | Constant of int
 | Binary of
 string *
 Expression *
 Expression

val evaluate :
 Expression -> int

Basic interpreter
structure (0/2)
Expression is the source
code that user writes

evaluate takes expression
and returns the result

type Value =
 | Number of int

type Expression =
 | Constant of int
 | Binary of
 string *
 Expression *
 Expression

val evaluate :
 Expression -> Value

Basic interpreter
structure (1/2)
Adding values as the
result of evaluation

Value is what we
get as the result

evaluate takes expression
and returns value

type Value =
 | Number of int

type Expression =
 | Constant of int
 | Binary of
 string *
 Expression *
 Expression
 | Variable of string

type VariableContext =
 Map<string, Value>

val evaluate :
 Expression -> VariableContext -> Value

Basic interpreter
structure (2/2)
Adding variables and
variable context

Variable can store only
values (call-by-value)

evaluate takes context

Demo
Adding values and variables

Lab overview
TinyML interpreter step-by-step

TinyML - Basic tasks
1. Simple numerical evaluator as the starting point

This has already been done for you :-)

2. Add unary operators (-) and conditional
We only have numbers, so treat 1 as true

3. Functions and application
Tricky! Closure needs to capture variables!

4. Let binding as syntactic sugar
Evaluate let by treating it as apply/lambda

5. Add a simple data type - tuples
New value, constructor and destructor

TinyML - Bonus & super tasks
1. Add more data types - unions

New value, constructor and destructor (match)

2. Add support for recursion
Needs Lazy<Value> in variable context to work

3. Add unit and create a list value
Case1(Const(1), Case1(Const(2), Case2(Unit)))

4. Implement call-by-name semantics
Change variable context to store expressions

5. Implement evaluation by substitution
Toy approach, but you learn the semantics

Lessons learned
Functional language interpreter

 Distinguishing Value and Expression

 Recursive function with variable scope

 Call-by-value and lexical variable scoping!

 Nice constructor and destructor symmetry

