TinyML: Tiny functional language interpreter
Interpreter and step-by-step guide

Tomas Petricek, Charles University

¥ (Omas@tomasp.net
¥ (Wtomasp.net

F/\Y

& Nttps/tomasp.net

V/\N
[]]

& https//d3s.mff.cuni.cz/teaching/nprg0/7/

mailto:tomas@tomasp.net
https://bsky.app/profile/tomasp.net
https://tomasp.net/
https://d3s.mff.cuni.cz/teaching/nprg077

type Expression =
| Constant of 1int
| Binary of
string *
Expression *
Expression

val evaluate :
Expression -> int

Basic interpreter
structure (0/2)

Expression IS the source
code that user writes

evaluate takes expression
and returns the result

type Value =
| Number of int

type Expression =
| Constant of int
| Binary of
string *
Expression *
Expression

val evaluate :
Expression -> Value

Basic interpreter
structure (1/2)

Adding values as the
result of evaluation

Value IS what we
get as the result

evaluate takes expression
and returns value

type Value =
| Number of int

type Expression =
| Constant of int
| Binary of
string *
Expression *
Expression
| Variable of string

type VariableContext =
Map<string, Value>

val evaluate :

Basic interpreter
structure (2/2)

Adding variables and
variable context

Variable can store only
values (call-by-value)

evaluate takes context

Expression -> VariableContext -> Value

Demo
Adding values and variables

Lab overview
TinyML interpreter step-by-step

TinyML - Basic tasks

1. Simple numerical evaluator as the starting point
This has already been done for you :-)

7. Add unary operators (-) and conditional
We only have numbers, so treat 1 as true

3. Functions and application
Tricky! Closure needs to capture variables!

4. Let binding as syntactic sugar
Fvaluate let by treating it as apply/lambda

5. Add a simple data type - tuples
New value, constructor and destructor

TinyML - Bonus & super tasks

1. Add more data types - unions
New value, constructor and destructor (match)

7. Add support for recursion
Needs Lazy<Value> In variable context to work

3. Add unit and create a list value
Casel(Const(1), Casel(Const(2), Case2(Unit)))

4 Implement call-by-name semantics
Change variable context to store expressions

5. Implement evaluation by substitution
Toy approach, but you learn the semantics

Lessons learned
Functional language interpreter

@ Distinguishing value and Expression

= Recursive function with variable scope

X Call-by-value and lexical variable scoping!
88 Nice constructor and destructor symmetry

