
TinyML: Tiny functional language interpreter
What you need to know about F#

Tomas Petricek, Charles University









tomas@tomasp.net
@tomasp.net
https://tomasp.net
https://d3s.mff.cuni.cz/teaching/nprg077

mailto:tomas@tomasp.net
https://bsky.app/profile/tomasp.net
https://tomasp.net/
https://d3s.mff.cuni.cz/teaching/nprg077

Two sides of this video
Introducing the F# language

Some practical information
Enough so that you can use it!
Some important things omitted

Introducing ML-style languages

Background for our TinyML
Basic features & principles
Some weird corner cases!

Getting started with F#
F# and .NET runtime

.NET SDK for Mac, Linux, Windows
OSS with .NET Foundation since 2017
https://dotnet.microsoft.com

F# editors and tools

Microsoft Visual Studio (Win only)
JetBrains Rider (Win, Linux, Mac)
VS Code with Ionide (Win, Linux, Mac)
https://ionide.io

https://dotnet.microsoft.com/
https://ionide.io/

F# project types
Script-based development

Write code in .fsx file
Run using F# Interactive REPL
Can select & run out-of-order!

Project-based development

Project .fsproj with .fs sources
Standard build and run workflow
Live reload with Fable and JavaScript

F# project structure
Declaration order matters!

Helper function and types
Types defining domain model
Operations for working with it
User interface

How to organize F# projects

Namespaces or modules
Type declarations
Functions (inside modules)

Data type declarations in F#
 Tuples and records

Store multiple values of different types

 Discriminated unions
Represent one of multiple possible options

 Collections, lists and maps
Multiple values of the same type

 Recursive declarations
Type that can include values of itself

 Type aliases
Shorthand for a type with a long name

Demo
Simple expression evaluator

Selected advanced features
Lists and maps

Immutable collections
Linked (cons) lists with head/tail
Key-value maps with lookup

Recursion and laziness

Recursive functions using let rec
Works also for values, but beware!
Lazy<T> to represent lazy values

Demo
Maps, lazy values, recursion

TinyML: Tiny functional language interpreter
Language features and theory

Tomas Petricek, Charles University









tomas@tomasp.net
@tomasp.net
https://tomasp.net
https://d3s.mff.cuni.cz/teaching/nprg077

mailto:tomas@tomasp.net
https://bsky.app/profile/tomasp.net
https://tomasp.net/
https://d3s.mff.cuni.cz/teaching/nprg077

(* Functions *)
let f = (fun x -> 10 + x)
f 32

(* Tuples *)
let t = (1, "hi")
fst t
snd t

(* Unions *)
let c1 = Case1(10)
let c2 = Case2(32)
match c1 with
| Case1 n -> n + 32
| Case2 n -> n + 10

Language features
of TinyML (1/2)
Functions but only with
single argument

Tuples of two element
with getters

Unions without tag
name with two cases

(* Let bindings *)
let x = 10 in x * 32

(* Let desugaring *)
(fun x -> x * 32) 10

(* Conditionals *)
if e then 10 else 32

(* Both are expressions *)
1 + (if e then 41 else 1)
1 + (let x = 1 in x + x)

(* Currying *)
let add = fun a -> fun b -> a + b
in (add 10) 32

Language features
of TinyML (2/2)
let is a syntactic sugar

Everything (if and let
too) is an expression

Functions that return
functions (currying) if
you need multiple
parameters

Variable scoping
Lexical

Based on static block
structure in code

Function value needs to
capture variables (closure)

Dynamic

Based on dynamic
evaluation structure

Operational
semantics
Formally specify how
expression evaluate

Substitution-based

We do not need
variable context!

Call-by-name vs.
call-by-value
Call-by-value (strict)

Evaluates function
arguments first (ML)

Call-by-name (lazy)

Evaluates arguments
when needed (Haskell)

TinyML: Tiny functional language interpreter
Interpreter and step-by-step guide

Tomas Petricek, Charles University









tomas@tomasp.net
@tomasp.net
https://tomasp.net
https://d3s.mff.cuni.cz/teaching/nprg077

mailto:tomas@tomasp.net
https://bsky.app/profile/tomasp.net
https://tomasp.net/
https://d3s.mff.cuni.cz/teaching/nprg077

type Expression =
 | Constant of int
 | Binary of
 string *
 Expression *
 Expression

val evaluate :
 Expression -> int

Basic interpreter
structure (0/2)
Expression is the source
code that user writes

evaluate takes expression
and returns the result

type Value =
 | Number of int

type Expression =
 | Constant of int
 | Binary of
 string *
 Expression *
 Expression

val evaluate :
 Expression -> Value

Basic interpreter
structure (1/2)
Adding values as the
result of evaluation

Value is what we
get as the result

evaluate takes expression
and returns value

type Value =
 | Number of int

type Expression =
 | Constant of int
 | Binary of
 string *
 Expression *
 Expression
 | Variable of string

type VariableContext =
 Map<string, Value>

val evaluate :
 Expression -> VariableContext -> Value

Basic interpreter
structure (2/2)
Adding variables and
variable context

Variable can store only
values (call-by-value)

evaluate takes context

Demo
Adding values and variables

Lab overview
TinyML interpreter step-by-step

TinyML - Basic tasks
1. Simple numerical evaluator as the starting point

This has already been done for you :-)

2. Add unary operators (-) and conditional
We only have numbers, so treat 1 as true

3. Functions and application
Tricky! Closure needs to capture variables!

4. Let binding as syntactic sugar
Evaluate let by treating it as apply/lambda

5. Add a simple data type - tuples
New value, constructor and destructor

TinyML - Bonus & super tasks
1. Add more data types - unions

New value, constructor and destructor (match)

2. Add support for recursion
Needs Lazy<Value> in variable context to work

3. Add unit and create a list value
Case1(Const(1), Case1(Const(2), Case2(Unit)))

4. Implement call-by-name semantics
Change variable context to store expressions

5. Implement evaluation by substitution
Toy approach, but you learn the semantics

Lessons learned
Functional language interpreter

 Distinguishing Value and Expression

 Recursive function with variable scope

 Call-by-value and lexical variable scoping!

 Nice constructor and destructor symmetry

