TinyBASIC: Interactive programming system
What you need to know about F

Tomas Petricek, Charles University

¥ (Omas@tomasp.net
¥ (Wtomasp.net

F/\Y

& Nttps/tomasp.net

V/\N
[]]

& https//d3s.mff.cuni.cz/teaching/nprg0/7/

mailto:tomas@tomasp.net
https://bsky.app/profile/tomasp.net
https://tomasp.net/
https://d3s.mff.cuni.cz/teaching/nprg077

TinyBASIC

What F

do you need to know

a8 Project, console and tail recursion

‘B #language logic and data types
A

em Records, functions, tuples, patterns

v= List processing using built-in functions

Demo
Project, console, recursion

let point = (1, 10)

let (x, y) = point

(* (int*int) -> (int*int) *)

let rotate (x, y) = (y, X)

(* int -> (int*int) -> (int*int) *)
let moveX by (x, y) = (x + by, V)
(* (int*int) -> int *)

let area (%, y) =
match x, y with
| 0, I , 0 ->0
|X/y_>X*y

(* (int*int) -> int *)

let area pt =
match pt with
(0,) I (, 0)) -> 0
|X1Y‘>X*Y

Tuples, patterns
and functions

Tuple type int * int
S just another ordinary
type of values

Pattern (x,y) can
appear in multiple
locations in code

Functions can mix
arguments and tuples

SKETCH
Tuples and patterns

let 11 = [1; 2; 3; 4]
let 12 = 1::2::3::4 []
let 13 = [1..4]

(* Pattern matching lists ¥*)
match list with

| [el; e2] -> (...)

| el::els => (...)

[=> (...)

(* Possible, but not very useful ¥*)
let (e::es) = list
let foo [el;e2] = (...)

(* Higher-order 1list functions ¥*)
let twice x = x * X

List.map twice [1..10]

List.map (fun x -> x * x) [1..10]
List.sum [1..10]

List constructors
and list patterns

List type written as
list<int> Or int list

Constructed using : :
(rare) and [..] (often)

Patterns ::and [..]
can appear anywhere,
but are partial

Demo
Real-world list processing (1/2)

LCeci nest pas une fufie.

The pipe operator

Fluent style for
functional data
processing

let (|>) x f = f x

In bash scripting (),
adopted by R (%>%),
maybe JavaScript

Demo
Real-world list processing (2/2)

