
TinyBASIC: Interactive programming system
What you need to know about F#

Tomas Petricek, Charles University









tomas@tomasp.net
@tomasp.net
https://tomasp.net
https://d3s.mff.cuni.cz/teaching/nprg077

mailto:tomas@tomasp.net
https://bsky.app/profile/tomasp.net
https://tomasp.net/
https://d3s.mff.cuni.cz/teaching/nprg077

TinyBASIC
What F# do you need to know

 Project, console and tail recursion

 F# language logic and data types

 Records, functions, tuples, patterns

 List processing using built-in functions

Demo
Project, console, recursion

let point = (1, 10)
let (x, y) = point

(* (int*int) -> (int*int) *)
let rotate (x, y) = (y, x)

(* int -> (int*int) -> (int*int) *)
let moveX by (x, y) = (x + by, y)

(* (int*int) -> int *)
let area (x, y) =
 match x, y with
 | 0, _ | _, 0 -> 0
 | x, y -> x * y

(* (int*int) -> int *)
let area pt =
 match pt with
 | ((0, _) | (_, 0)) -> 0
 | x, y -> x * y

Tuples, patterns
and functions
Tuple type int * int
is just another ordinary
type of values

Pattern (x,y) can
appear in multiple
locations in code

Functions can mix
arguments and tuples

SKETCH
Tuples and patterns

let l1 = [1; 2; 3; 4]
let l2 = 1::2::3::4::[]
let l3 = [1..4]

(* Pattern matching lists *)
match list with
| [e1; e2] -> (...)
| el::els -> (...)
| [] -> (...)

(* Possible, but not very useful *)
let (e::es) = list
let foo [e1;e2] = (...)

(* Higher-order list functions *)
let twice x = x * x
List.map twice [1..10]
List.map (fun x -> x * x) [1..10]
List.sum [1..10]

List constructors
and list patterns
List type written as
list<int> or int list

Constructed using ::
(rare) and [..] (often)

Patterns :: and [..]
can appear anywhere,
but are partial

Demo
Real-world list processing (1/2)

The pipe operator
Fluent style for
functional data
processing

let (|>) x f = f x

In bash scripting (|),
adopted by R (%>%),
maybe JavaScript

Demo
Real-world list processing (2/2)

